

About Schneider Electric

Schneider Electric is leading the Digital Transformation of Energy Management and Automation in Homes, Buildings, Data Centers, Infrastructure and Industries.
With global presence in over 100 countries, Schneider is the undisputable leader in Power Management - Medium Voltage, Low Voltage and Secure Power, and in Automation Systems. We provide integrated efficiency solutions, combining energy, automation and software. In our global Ecosystem, we collaborate with the largest Partner, Integrator and Developer Community on our Open Platform to deliver real-time control and operational efficiency.
We believe that great people and partners make Schneider a great company and that our commitment to Innovation, Diversity and Sustainability ensures that Life Is On everywhere, for everyone and at every moment.

[^0]
About This Catalog and Online Resources

Welcome to the 2020 Schneider Electric Valves and Actuators Catalog

Superior engineering, product design patents, ISO9001 certification, and Six Sigma lean manufacturing ensure our products conform to the highest standards of internationally recognized quality to deliver solid performance, unsurpassed value and exceptional reliability. It is recommended to view this catalog in PDF (Acrobat Reader required) from the Exchange Extranet or from iPortal.

At various places throughout the printed catalog, you can take a picture with a Smartphone of the "Quick Response" (QR) code graphics to be taken to an online page describing a product featured. Users of this catalog are reminded to also view product Selection Guides, Specification and Installation Sheets, as well as the separately available Wiring, Dimensions and Reference document F-28125 from the Exchange Download Center.
In this catalog, click on ß to be directed to the SE website for the topic.

The Exchange Extranet and iPortal

Schneider Electric's iPortal enables customers to quickly and easily search and order products, track order status, review order history and download product documentation. iPortal is an important on-line tool and part of our commitment to provide comprehensive information for both internal and sales channels. Explore the Exchange Extranet for quick and easy access to assets; from software and firmware to technical documentation, as well as sales and marketing collateral. Visit Schneider Electric at https://www.se.com/us/en/

Stay connected!

Linkedln
https://www.linkedin.com/company/schneider-electric/
YouTube
https://www.youtube.com/watch?v=VbldHPFItQQ
Blog
https://blog.se.com/

Online Selection Tool for Schneider Electric Valves/Assemblies \& Damper Actuators

Product Selection Tool

Schneider Electric's online selection tool for Valves/Assemblies and Damper Actuators quickly and easily puts a wealth of information at user fingertips to ensure specification of the optimum parts to fit their application.

Features

- Part selection based on calculators and drop down menus
- Save and load customer profiles, including customer name, country, contact information, job titles, project names and customer logos
- Schedule hydronic systems using the Valve Assembly selection feature
- Schedule damper applications using the Damper Actuator selection feature
- View, edit, change and adjust schedules on the Schedule page. Download completed schedules to Excel, pdf, BOM for easy upload to iPortal, or formatted for upload to Schneider Electric's Studio 360 suite
- Save schedules in progress to be worked on later or for use as a template for future projects

Browser Compatibility

- Chrome (recommended), Firefox, Safari, Edge, Internet Explorer 11 or greater

Original Valve Selection Tool

- The online Valve Selection Tool launched in 2017 has all the features of the previous Valve Selection Tool plus added features; the previous Tool and all earlier versions will not be updated

Selection Tool Product Categories

- Ball Valves
- Butterfly Valves
- Damper Actuators
- Globe Valves
- Pressure Independent Balancing Control Valves
- Zone Valves

Key Functions \& Benefits

- Web-based Selection Tool (compatible with wide screen mobile devices)
- Schedule generation
- Sizing and Cv calculator
- List pricing on all products
- Schedule customization
- Quick access to related product documentation
- Favorite Products List Save Feature
- Schedule download to Excel, PDF, BOM
- Easy iPortal upload, Studio 360 File
- User Preferences and Customization
- Company Information
- Address \& Logo
- Favorite Parts List

About This Catalog and Online Resources

MyExchange Sales Mobile App

Bring more "wow" to your customer meetings! MyExchange mobile app enables sales teams to share the latest marketing and sales content via their mobile device to make meetings and follow-up more productive.

With the MyExchange app you can:

- Easily access and view the latest assets (e.g. videos, presentations, specification sheets) while online
- Download assets for availability while offline
- Electronically mark up assets (highlight, pen) and save changes
- Manage a personal "channel" with your own presentation content
- Email assets to others (customers, consultants) and manage sharing activities/history
- Receive news and notifications on updates directly on your device
- To download MyExchange for iOS devices, visit the iTunes® App Store (search for "myexchange Schneider Electric") or link to (in the U.S.):
- MyExchange Schneider Electric on the App Store on iTunes.
- For Android devices, access the app in the Google Play store by searching for 'myexchange Schneider Electric'. See the Play Store for Android system requirements.
You must self-register on The Exchange before using MyExchange. Register at:
https://ecobuilding.schneider-electric.com/login-register

Valve and Valve Assembly Ordering Charts

Use this list to navigate directly to the Part Numbering Selection Charts and Selection Process (where available) in this catalog:

27

[^1]
Table of Contents

About This Catalog and Online Resources

10 Overview - SR SmartX Damper Actuators
$12 \mathrm{Mx4D}-703 \mathrm{x} / 803 \times$ Series $30 \mathrm{Ib}-\mathrm{in}$ SR SmartX Damper Actuators
$13 \mathrm{Mx40-704x}$ Series $35 \mathrm{lb}-\mathrm{in}$ SR SmartX Damper Actuators
$14 \mathrm{M} \times 41-7000$ Series 60/133 lb-in SR SmartX Damper Actuators
15 Mx40-717x Series 150 Ib -in SR SmartX Damper Actuators
16 Mx41-730x Series 270 Ib-in SR SmartX Damper Actuators
17 Overview - NSR SmartX Damper Actuators
18 M 4 41-60×3 Series 44/88 Ib-in NSR SmartX Damper Actuators
19 Mx41-6153 Series $133 \mathrm{lb}-i n$ NSR SmartX Damper Actuators
23 0453X Series Two-Position Damper Actuators
25 2. VB-7000 Series Globe Valves and Sizing and Selection
26 Overview VB-7000 Series Globe Valves
27 Ordering VB-7000 Series Globe Valves
28 2-Way Brass Trim Valves with Soft Seats
29 2-Way Stainless Trim Valves with Soft Seats
30 2-Way Stainless Trim Valves with Metal Seats
31 VBS-9263 $1 / 2^{\prime \prime}$ \& 3/4" 2-Way Stainless Valves with Soft Seats
32 2-Way Brass Trim Valves with Soft Seats, Union
33 2-Way Brass Trim Valves with Soft Seats, Union
34 3-Way Mixing Valves
35 3-Way Diverting \& Sequencing Valves
$36 \quad 2$ \& 3-Way Valves Sizing for Water
37 2-Way Flow, Temperature \& Materials
38 Water Capacity for 0.1...9.0 Cv Valves
39 Water Capacity for 10... 40 Cv Valves
40 3-Way Flow, Temperature \& Materials
41 Water Capacity
42 Cavitation Limitations on Valve Pressure Drop
44 Saturated Steam Valve Selection $1 / 2$ "...6" Valves (2-Way only)
45 VB-7000 \& VBS 9263 ½"...2" Hydraulic \& Electric Close-Off
$46 \quad 1 / 22^{\prime \prime} . .2$ 2" Pneumatic Close-Off Ratings
47 3. VB-7000 Series Globe Valve and Actuator Assemblies
Overview VB-7000 ½"...2" Valve Actuator Assemblies
50 Ordering VB-7000 Globe Valve Assemblies
52 1⁄2"...2" 2-Way Globe Valves with Linear SR Actuators

62 1/2"...2" 3-Way Mixing \& Diverting/Sequencing with Pneumatic Actuator
63 11/2"...2" 3-Way Mixing \& Diverting/Sequencing with Pneumatic Actuators

65 4. VB-7000 Series Globe Valve Actuators and

 Linkages67 MG350V Globe Valve NSR SmartX Actuators
68 M400 M800 and M1500 NSR Forta Actuators
70 Mx51-710x 105 Ibf Linear SR SmartX Actuators
71 Mx51-720x 220 Ibf Linear SR SmartX Actuators
$75 \mathrm{Mx41-707} \mathrm{\times /715} \mathrm{\times 60/133Ib-in} \mathrm{SR} \mathrm{SmartX}$ Actuators
76 Mx40-717x 150 lb -in SR SmartX Actuators
77 Mx41-6043 $44 \mathrm{lb}-\mathrm{in}$ NSR SmartX Actuators
78 Mx41-6083 88 lb -in NSR SmartX Actuators
79 Mx41-6153 $133 \mathrm{Ib}-\mathrm{in}$ NSR SmartX Actuators
80 AV-602 Linkage
81 AV-611 Linkage
82 MA-52xx Hydraulic 2-Position SR Actuators
84 MP-52xx Hydraulic Proportional SR Actuators
86 MP-541x Hydraulic Proportional SR Actuators
88 MPR-561x Hydraulic Proportional SR Actuators
90 AV-601 Extension for MA, MP 5x1x-xxx, MPR-5x1x, MP-541x
91 MK-2690 Pneumatic Valve Actuator - Proportional
93 MK-46xx Pneumatic Actuator - Proportional
94 MK-66xx Pneumatic Actuator - Proportional
95 AK-42309-500 Positive Positioning Relay

Mx40-704x Series Actuator

VB-7213 Globe Valve

MG350V and
VB-7313 Globe Valve

109 6.

Mx41-715x $133 \mathrm{lb}-\mathrm{in}$ SR SmartX Actuators
Mx40-717x $150 \mathrm{lb}-\mathrm{in}$ SR SmartX Actuators
Mx61-720x 220 lbf SR SmartX Actuators Mx61-634x 300 lb -in NSR SmartX Actuators
Mx41-6153 $133 \mathrm{lb}-\mathrm{in}$ NSR SmartX Actuators
M800A, M1500A 180/337 Ibf NSR Forta Actuators MK-6811/6911 SR Pneumatic Actuators
MK-88/8911 SR Pneumatic Actuators
Pneumatic Positive Positioning Relay for VB-7/8/9xxx Rack \& Pinion Linkages AV-607/609-1
5. VB-8/9000 Series Globe Valves Sizing and Selection

Ordering VB-8/9000 Valves
VB-8000 $21 / 2^{\prime \prime} . . .6$ " 2 and 3-Way Valves
VB-9313 $21 / 2^{\prime \prime} . . .6$ " 3 -Way Mixing Valves
3-Way Valve Sizing for Water
B-8xx3 Valve Body Characteristics
VB-82x3 Water Flow Coefficient and Capacity
VB-82x3 Steam Capacity \& Vapor Pressures
VB-9313 Valve Body Characteristics
VB-9313 Water Flow Coefficient and Capacity
6. VB-8/9000 Series Valve and Actuator Assemblies

Overview VB-8/9000 Series Actuator Assemblies VB-8000, VB-9000 Assembly Selection Procedure VB-8xx3/9313 Close-Off Ratings
VB-82x3 2-Way Globe Valves with NSR Actuators
B-8303 3-Way Globe Valves with NSR Actuators VB-82x3 2-Way Globe Valves with SR Actuators VB-8303 3-Way Globe Valves with SR Actuators Vx-9313 3-Way Globe Valves with Linear SR Actuators Vx-9313 3-Way Globe Values with Linked SR Actuators Vx-9313 3-Way Globe Valves with Linked NSR Actuators VB-82x3 2-Way Globe Valves with Pneumatic SR Actuators VB-82x3 3-Way Globe Valves with Pneumatic SR Actuators

Mx61-720x Series Actuator and VB-8213 Flanged Globe Valve

135 8. VBB/VBS and VB-2000 Series Ball Valve Assemblies
136 Overview VBB/VBS Valves with M2/M3 Actuators
138 M2/M3 Actuator/Valve Specifications
139 M2/M3 and Valve Selection and Flow Direction
140 M2/M3 Two-Position, Floating and Proportional Actuators
1412 and 3-Way Brass and Stainless Steel Trim Valves
142 VB-2000 Series Ball Valves with SmartX Actuators
143 Features \& Benefits, and Ball Valve Assembly Selection
144 VB-2000 Series Actuator Part Numbering
145 VB-2000 Series 2 and 3-Way Sizes, Port Codes, Cv/Kvs
146 VB-2000 Series 2 and 3-Way Ball Valve Specifications
147 VB-2000 2-Way Ball Valve Assemblies with SmartX Actuators
148 VB-2000 3-Way Mixing Assemblies with SmartX Actuators
149
151
152
153
154
VB-2000 SR and NSR SmartX Actuator Specifications
VB-2000 2-Way Ball Valve Assembly Dimensions (44/88 lb-in.) VB-2000 3-Way Ball Valve Assembly Dimensions (44/88 Ib-in.) B-2000 2-Way Ball Valve Assembly Dimensions (35 lb-in.) VB-2000 3-Way Mixing Ball Valve Assembly Dimensions (35 lb-in.) VB-2000 2-Way Ball Valve Assembly Dimensions (30 lb-in.) VB-2000 3-Way Mixing Ball Valve Assembly Dimensions (30 lb-in.)

157 9. Zone Valves

159 Modulating Zone Valve Assembly Ordering
160 2-Position SR/NSR Zone Valves \& Assembly Ordering
161 Erie ${ }^{\text {TM }} 1 / 2$ "...1" NPT 2-Way SR Modulating N.O./N.C. and 3-Way N.C
162 Erie ${ }^{\text {TM }} 1 / 22^{\prime \prime} \ldots 1 \frac{1}{4}$ " Sweat Ends 2-Way Modulating N.O./N.C and 3-Way Mixing SR N.C
163 Erie ${ }^{\text {TM }} 1 / 22^{\prime \prime} \ldots 1 \frac{1}{4}$ " Sweat Ends 2-Way NSR Modulating
163 Erie ${ }^{\text {TM }} 1 / 2^{\prime \prime} \ldots 1^{\prime \prime}$ NPT 2-Way Modulating \& 3-Way Mixing NSR
164 Erie ${ }^{\text {TM }} 1 / 2^{\prime \prime} \ldots 1^{1} / 4^{\prime \prime}$ NPT 3-Way Mixing SR Modulating
165 Erie ${ }^{\text {TM }} 1 / 2^{\prime \prime} \ldots$ 111/4" Two Position 2-Way SR General Close Off - Sweat Ends
166 Erie $^{\text {TM }} 1 / 2^{\prime \prime} \ldots$ 1" Two Position 2-Way SR General Close Off - Female NPT
167 Erie ${ }^{T M} 1 / 2^{\prime \prime} \ldots 1 \frac{1}{4} 4^{\prime \prime} 2$-Way SR High Close Off Two Position - Sweat Ends
168 Erie ${ }^{\text {TM }} 1 / 2^{\prime \prime} \ldots 1^{\prime \prime} 2$-Way SR High Close Off Two Position - Female NPT
169 Erie ${ }^{\text {TM } 1 / 2 " \ldots .11 / 4^{\prime \prime} 3-W a y ~ M i x i n g ~ o r ~ D i v e r t i n g ~ S R ~ N . C . ~-~ S w e a t ~ E n d s ~}$
170 Erie ${ }^{\text {TM }} 1 / 2^{\prime \prime} \ldots 1 \frac{1}{4} 4^{\prime \prime} 3$-Way Mixing or Diverting SR N.C. - Female NPT
171 Erie ${ }^{\text {TM }} 1 / 2^{\prime \prime} \ldots .1 \frac{1}{4}$ " 3 -Way Mixing or Diverting SR N.C. - Sweat Ends
172 Erie ${ }^{\text {TM }} 1 / 2^{\prime \prime} \ldots 1^{\prime \prime}$ 3-Way Mixing or Diverting SR N.C. - Female NPT
173 Erie $^{\text {TM }}$ AG, AH Series SR 2-Position Actuator
174 Erie $^{\text {TM }}$ APx3, ATx3 Series NSR Modulating Actuator
174 Erie $^{\text {TM }}$ APx3, ATx3 Series SR Modulating Actuators
175 Erie ${ }^{\text {TM }}$ PopTop, 2/3-Way VM SR/NSR Assembly Flow Pattterns
176 Erie $^{\text {TM }}$ PopTop, 2/3-Way VT/VS Two Position SR Assembly Flow Pattterns

Mx61-720x Series Actuator and VB-9313 Flanged Globe Valve

Zone Valves \& Actuators

VB-6xxx Butterfly Valves

SmartX PIBCV MP13124x and VP228E-1xBQx

SmartX PIBCV MP2000 Series and VP221A-150-CQx

20 Overview: Foot Mount Actuators
221 MA-3/4xx Series Two-Position Oil-Submerged Actuators
222 MC-351/421/431 NSR Two-Position Actuators
223 MP-3/-4xx, MP-2/-4xxx Series Reversible and Proportional Electric Actuators
225 MP-9xxx Series Reversible and Proportional Electronic Actuators 226 CP-8301 2... 15 Vdc Electronic Actuator Drive
227 CP-8391-716 Series 4 to 20 mA Electronic Actuator Drive
228 CP-8391-913 Series Electronic Actuator Drive
229

231 Guide Specification Text

2

178
80
181
181
82 S70 2"...18" 2-Way \& 2"...16" 3-Way NSR Actuators
183 2.5"...18" 2-Way High Performance Assemblies
184 2-Way High Performance Butterfly Actuator Codes
185 2"...4" Lug Bodies 2-Way SR N.C. Assemblies
186 2"...4" Lug Bodies 2-Way SR N.O. Assemblies
187 2"...6" Lug Bodies 2-Way NSR Assemblies
188 2"...18" Lug Bodies 2-Way NSR with Hand Wheel Assemblies
189 2"...4" Lug Bodies 3-Way SR N.C. Assemblies
190 2"...4" Lug Bodies 3-Way SR N.O. Assemblies
191 2"...6" Lug Bodies 3-Way NSR Assemblies

194
195
196
197
198
199
20
201
202
203
205
206
207
208
209
210
11
212
213
214
215

217

owering an
 always on" world >

How smart infrastructures work

1. Damper Actuators

Spring Return Direct Coupled SmartX Actuators

Value-Driven General Purpose Applications

Mx4D-703x and Mx4D-803x Series

- Two position models controlled by SPST controller
- Floating models controlled by SPDT floating controllers
- Jumper selectable control function direct/reverse action
- Floating and Proportional models automatically adjust input span to match the damper/valve travel

Damp and Harsh Environment Applications

Mx40-717x Series

- Direct mount to round or square damper shaft
- $150 \mathrm{lb}-\mathrm{in}(17 \mathrm{~N}-\mathrm{m})$ torque rating, overload protection throughout rotation
- Oil immersed gear train provides continuous lubrication
- Automatic current sensing motor control provides extended reliability and repeatable timing
- Provides true mechanical clockwise or counterclockwise spring return operation for reliable positive close-off in airtight applications
- 5-year warranty, NEMA 4 housing (IEC IP56)
- Can be double mounted (gang mounting) to accommodate high torque application requirements (2 to 4 actuators)
- MS40-717x models provide position feedback signal

High Performance HVAC Applications

Mx40-704x Series

- Direct mount to round or square damper shaft
- 35 lb -in $(4 \mathrm{~N}-\mathrm{m})$ torque rating
- Overload protection throughout rotation
- Optional built-in auxiliary switches
- True mechanical clockwise or counterclockwise spring return operation for reliable, positive closeoff in airtight applications
- Visual position indicator
- Direct acting or reverse acting control mode available on proportional models
- Rotation limiting available
- Rugged die-cast housing for NEMA 2/IP54 rating

Mx41-7xxx Series

- Direct mount to round or square damper shaft
- $60 \mathrm{lb}-\mathrm{in}(7 \mathrm{~N}-\mathrm{m})$ torque rating
- $133 \mathrm{lb}-\mathrm{in}(15 \mathrm{~N}-\mathrm{m})$ torque rating
- Overload protection throughout rotation
- Optional built-in auxiliary switches
- Provides true mechanical clockwise or counterclockwise spring return operation for reliable positive close-off in airtight applications
- Direct acting or reverse acting control mode available on proportional models
- Rotation limiting available
- Rugged die-cast housing for NEMA 2/IP54 rating
- Manual override

High Torque HVAC Applications

Mx41-730x Series

- $270 \mathrm{lb}-\mathrm{in}(30 \mathrm{~N}-\mathrm{m})$ of torque with mechanical spring return, manual override, and Brushless DC Motor.
- Stall protected throughout rotation and reversible mounting.
- Models for Two Position $24 \mathrm{Vac} / \mathrm{Vdc}$, and Two Position 100... 230 Vac applications.
- Models for 2... 10 Vdc input signal applications (field configurable for other input signals) with a position feedback signal and direct/reverse acting control mode selection switch on both sides.
- Models for auxiliary switch applications.
- Models for NEMA 4 / IP66 outdoor applications.
- 95° of rotation, adjustable with mechanical end stops and graduated position indicator showing $0^{\circ} \ldots 95^{\circ}$.
- Can be double-mounted (gang mounting) to accommodate high torque application requirements.

		Control Type						$\begin{array}{r} 0 \\ 9 \\ >0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Power				Power Input			Running Time (sec)		c030$\frac{\lambda}{\bar{u}}$$\frac{0}{\bar{x}}$$\frac{3}{4}$	
		$\begin{aligned} & \stackrel{ᄃ}{0} \\ & \cdots \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & i \\ & i \end{aligned}$	O$\stackrel{\text { E }}{0}$은ㄴ	Proportional						$\begin{aligned} & 00 \\ & \vdots \\ & \vdots \\ & \star ~ \\ & \sim \end{aligned}$				$\begin{aligned} & N \\ & N \\ & \hline \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	Watts @$60 \mathrm{~Hz}$		$\begin{aligned} & \text { ర } \\ & \frac{D}{U} \\ & \frac{2}{0} \\ & 0 \end{aligned}$			
				$\begin{aligned} & 00 \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\circ}{\leftarrow} \\ \vdots \\ \vdots \end{gathered}$	$\begin{gathered} \stackrel{\circ}{N} \\ \vdots \\ \underset{\sim}{x} \end{gathered}$	$\begin{array}{r} \text { の } 0 \\ \vdots \\ 0 \end{array}$									$\begin{aligned} & \text { O } \\ & \text { ㄷ } \\ & \stackrel{0}{O} \\ & \text { I } \end{aligned}$				
MA4D-7030	30													7.8	5.0	2.5	<56	<23		CCW
MA4D-7033-100														5.1						
MA4D-8030														7.8	5.0	2.5				
MA4D-8033-100														5.1						
MF4D-7033-100														6.8	4.2					CCW
MF4D-8033-100														6.8	4.2					CW
MS4D-7033-100																				
MS4D-7033-150																	85	21		CCW
MS4D-7033-160														6.1	3.4	1.4	85	21		
MS4D-8033-100														6.1	3.4	1.4				
MS4D-8033-150																				CW
MS4D-8033-160																				
MA40-7040														4.3	3.4	12	<80	<40		
MA40-7040-501														4.3	3.4	1.2	<80	<40	1	
MA40-7041														4.6	3.9	1.2				
MA40-7041-501														4.6	3.9	1.2	<50	<28	1	
MA40-7043														4.4	2.9	0.8	-50	-28		
MA40-7043-501														4.4	2.9	0.8			1	
MF40-7043	35													5.9	4.4	2.9				
MF40-7043-501														5.9	4.4	2.9			1	
MS40-7043														5.6	4.2	2.4	$<$	<25		
MS40-7043-501														5.6	4.			<25	1	
MS40-7043-MP														6.6	5.0	32				
MS40-7043-MP5														6.6	5.0	3.2			1	
MA41-7070														5.6	3.6	1.2	<80	<4		
MA41-7070-502														5.6	3.6	1.2	<80	<4	2	
MA41-7071														8.0	4.0	1.4				
MA41-7071-502														8.0		1.4	<80	<40	2	
MA41-7073	0													4.8	3.2	0.8				
MA41-7073-502	60													4.8	3.2	0.8			2	
MF41-7073														6.2	4.8	2.8				
MF41-7073-502														6.2	4.8	2.8	<195		2	
MS41-7073														5.8	4.6	2.3	<195			
MS41-7073-502														5.8	4.6	2.3			2	
MA41-7150														10.0	8.4	3.3				
MA41-7150-502														10.0	8.4	3.3			2	CCW
MA41-7151														10.6	8.5	5.0		<30		
MA41-7151-502														10.6	8.5	5.0		<30	2	
MA41-7153	133														75	28	<190			
MA41-7153-502	133														7.5	2.8	<190		2	
MF41-7153														9.7	7.7	3.2				
MF41-7153-502														9.7	7.7	3.2			2	
MS41-7153															7.4	2.9				
MS41-7153-502															7.4	2.9			2	
MA40-7170														8.4			<162	<82		
MS40-7170														8.5				<65		
MS40-7171														10.8			<147	<65		
MA40-7173	150													7.4			<162			
MF40-7173														8.1			<162			
MS40-7173														7.8			<147	<65		
MA41-7303														16^{1}						
MA41-7303-502														16			75		2	
MA41-7300														21			75			
MA41-7300-502														21	9.5				2	
MS41-7303 ${ }^{3}$	270															4.5		<20		
MS41-7303-502 ${ }^{3}$														16^{1}					2	
MS41-7303-W02 ${ }^{3}$																	$150{ }^{4}$		2	
MS41-7303-WH2 ${ }^{3}$														$\begin{aligned} & 16 \\ & 21 \text { w/ } \end{aligned}$ $\text { heater }{ }^{1}$	$\begin{aligned} & \hline 9.5 \\ & 21 \mathrm{w} / \\ & \text { heater } \\ & \hline \end{aligned}$				2	

a - Proportional models with a $2 \ldots 10 \mathrm{VDC}$ control signal accept a $4 \ldots 20 \mathrm{~mA}$ signal with the use of a 500 ohm resistor.

- Class 2 power source.

3 - Also compatible with floating, pulse width modulating (PWM), and other DC signal inputs with use of the BEL-ZTH US Handheld Interface Module for Field Programming.
4 - Timing field adjustable from 60... 150 seconds with use of the BEL-ZTH US Handheld Interface Module for Field Programming.

Mx4D-703x and Mx4D-803x Series

$30 \mathrm{lb}-\mathrm{in}$ Direct Coupled Damper Actuators

Product Description

Designed for controlling air dampers in building systems that require fail safe return, with two position, floating or proportional control.
Features

- Two position models controlled by SPST controller
- Floating models controlled by SPDT floating controllers
- Jumper selectable control function direct/reverse action
- Spring return models provide $30 \mathrm{in}-\mathrm{lb}(3.4 \mathrm{~N}-\mathrm{m})$ of torque
- Polymer housing rated for NEMA 2/IP54

- Overload protection throughout stroke
- Floating and proportional models automatically adjust input span to match the damper/valve travel
- Compact size allows installation in limited space
- Manual override allows positioning of dampers and valves
- Directly mounts to $1 / 2 \ldots 3^{\prime \prime}$ Schneider Electric ball valves
- Polymer housing rated for plenum use

Specifications	Refer to the tables for actuator models and control types.
Control Signal	
Power Inputs	$3 \mathrm{ft}(91 \mathrm{~cm})$ appliance (see * in table below) or $10 \mathrm{ft}.(3 \mathrm{~m})$ plenum cables, enclosure accepts $1 / 2^{\prime \prime}(13 \mathrm{~mm})$ conduit connector.
Connections	Position Feedback Voltage (proportional or floating only): For voltage ranges, the feedback signal is the same range as the input signal. The $4 . .20 \mathrm{~mA}$ current range and floating actuators have a $2 \ldots 10$ Vdc feedback signal. The feedback signal can supply up to 0.5 mA to operate up to four additional slave actuators.
Electrical Outputs	

Mechanical Outputs	Travel: 93° nominal. Manual Override: Allows positioning of damper or valve using manual crank. RA/DA Jumper: Permits reverse acting/direct acting control (MS4D models only).
Ambient Temperature Limits	Shipping \& Storage: $-40 \ldots 160^{\circ} \mathrm{F}\left(-40 \ldots 71^{\circ} \mathrm{C}\right)$. Operating: -22... $140^{\circ} \mathrm{F}\left(-30 \ldots 60^{\circ} \mathrm{C}\right)$. Humidity: $15 . . .95 \%$ RH, non-condensing.
Location	NEMA 1. NEMA 2, UL Type 2 (IEC IP54) with customer supplied water tight conduit connectors. Enclosure is air plenum rated.
Agency Listings	UL 873: Underwriters Laboratories (File \#E9429 Category Temperature-Indicating and Regulating Equipment). CUL: UL LISTED for use in Canada by Underwriters Laboratories. Canadian Standards C22.2 No. 24-93. This product fits in Installation Category (Overvoltage Category) II per EN 61010-1.

Part Number	Torque lb-in ($\mathrm{N}-\mathrm{m}$)	Spring Return	Actuator Inputs			Outputs		Approximate Timing in seconds @ $70^{\circ} \mathrm{F}$	
			Control	Voltage	$\begin{aligned} & \text { VA @ } \\ & 60 \mathrm{~Hz} \end{aligned}$	Feedback	Auxiliary Switch	Powered	Spring Return
MA4D-7033-100	30 (3.4)	CCW	2 Position	$24 \mathrm{Vac} / \mathrm{dc}$	5.1	-	No	56	23
MA4D-7030				120 Vac	7.8				
MA4D-8033-100		CW		$24 \mathrm{Vac} / \mathrm{dc}$	5.1				
MA4D-8030				120 Vac	7.8				
MF4D-7033-100		CCW	Float	$24 \mathrm{Vac} / \mathrm{dc}$	6.8			85	21
MF4D-8033-100		CW	Floating		6.8	$2 . .10 \mathrm{vdc}$			
MS4D-7033-100		CCW	2... 10 vdc		6.1				
MS4D-7033-150			$0 . . .10 \mathrm{vdc}$			$0 . .10 \mathrm{vdc}$			
MS4D-7033-160			4... 20 ma			$2 . .10 \mathrm{vdc}$			
MS4D-8033-100		CW	$2 . . .10 \mathrm{vdc}$			$2 . . .10 \mathrm{vdc}$			
MS4D-8033-150			$0 . . .10 \mathrm{vdc}$			$0 . . .10 \mathrm{vdc}$			
MS4D-8033-160			4... 20 ma			$2 . . .10 \mathrm{vdc}$			

Mx40-704x Series 35 Ib-in SR SmartX Damper Actuators

Mx40-704x Series
 $35 \mathrm{Ib}-\mathrm{in}$ Direct Coupled Damper Actuators

Product Description

For spring return applications requiring floating, two-position, or proportional modulation control of dampers and valves in HVAC systems. Directly mounts to $1 / 2^{\prime \prime} \ldots 3^{\prime \prime}$ Schneider Electric ball valves.
Features

- Direct mount to round or square damper shaft
- Overload protection throughout rotation
- Optional built-in auxiliary switches
- True mechanical clockwise or counterclockwise spring return operation for reliable, positive close-off in airtight applications
- Visual position indicator
- Direct acting or reverse acting control mode available on proportional models
- Rotation limiting available
- Rugged die-cast housing for NEMA 2/IP54 rating

Specifications	
Control Signal	On-off, SPST control contacts or Triacs (500 mA rated). Floating point control, 24 Vac . Proportional, 6...9, 2 .. 10 Vdc or 4 to 20 mA dc with a 500Ω resistor.
Power Inputs	See table.
Connections	MA40-704x and MA40-704x-501 - 3 ft . (91 cm) long, appliance cables, $1 / 2 \mathrm{in}$. conduit connector. For M20 Metric conduit, use AM-756 adaptor. MF40-7043 and MF40-7043501, MS40-7043 and MS40-7043-501 - 3 ft . $(91 \mathrm{~cm}$) long, plenum-rated cables, $1 / 2 \mathrm{in}$. conduit connector. For M20 Metric conduit, use AM-756 adaptor.
Electrical Outputs	Position Feedback Voltage "AO": $2 \ldots 10 \mathrm{Vdc}$ (maximum 0.5 mA) output signal for position feedback or operation of up to four slave actuators. One auxiliary switch available (select models). SPDT 6a resistive @24 Vac or 250 Vac.

Mechanical Outputs	Travel Rotation is limited to $95^{\circ} \pm 5^{\circ}$ maximum, adjustable from $40 . .95^{\circ}$ with a mechanical stop. RA/DA Switch: selects direct acting or reverse acting for proportional models. Position Indicator: Visual indicator, 0... 1 (0 is the spring-return position).
Ambient Temperature Limits	Shipping \& Storage: $-40 \mathrm{~F} \ldots 160^{\circ} \mathrm{F}\left(-40 \ldots 71^{\circ} \mathrm{C}\right)$. Operating: $-22 \ldots 140^{\circ} \mathrm{F}\left(-30 \ldots 60^{\circ} \mathrm{C}\right)$. Humidity: $5 \ldots 95 \%$ RH, non-condensing.
Location	NEMA 2 (IEC IP54)
Agency Listings	UL 873: Underwriters Laboratories (File \# E9429 Category Temperature-Indicating and Regulating Equipment). CUL: UL LISTED for use in Canada by Underwriters Laboratories. Canadian Standards C22.2 No. 24.

Part Number	$\begin{aligned} & \text { Torque } \\ & \text { lb-in } \\ & (\mathrm{N}-\mathrm{m}) \end{aligned}$	Spring Return	Actuator Inputs			Outputs		Approximate Timing in seconds @ $70^{\circ} \mathrm{F}$	
			Control	Voltage	VA@ 60Hz	Feedback	Auxiliary Switch	Powered	Spring Return
MA40-7040	35 (4)	CW/CCW	2 Position	120 Vac	4.3	-	-	<50	<28
MA40-7040-501							1-SPDT (250 Vac)		
MA40-7041				230 Vac	4.6		-		
MA40-7041-501							1-SPDT (250 Vac)		
MA40-7043				$24 \mathrm{Vac} / \mathrm{dc}$	4.4		-		
MA40-7043-501							1-SPDT (24 Vac)		
MF40-7043			Floating		5.9		-	<130	<25
MF40-7043-501							1-SPDT (24 Vac)		
MS40-7043			2... 10 vdc			$2 . .10 \mathrm{vdc}$	-		
MS40-7043-501							1-SPDT (24 Vac)		
MS40-7043-MP ${ }^{\text {a }}$			$6 . . .9 \mathrm{vdc}$		6.6		-		
MS40-7043-MP5 ${ }^{\text {a }}$							1-SPDT (24 Vac)		

a - For MP and MP5: Provides auxiliary power supply +20 Vdc 25 mA maximum.

Mx41-7000 Series 60/133 Ib-in SR SmartX Damper Actuators

Mx41-7xxx Series

$60 \mathrm{lb}-\mathrm{in}$ and $133 \mathrm{lb}-\mathrm{in}$ Direct Coupled Damper Actuators

Designed for controlling air dampers in building systems that require fail safe return, with two position, floating or proportional control.

Features

- Direct mount to round or square damper shaft
- Overload protection throughout rotation
- Optional built-in auxiliary switches
- Provides true mechanical clockwise or counterclockwise spring return operation for reliable positive close-off in airtight applications
- Direct acting or reverse acting control mode available on proportional models
- Rotation limiting available

- Rugged die-cast housing for NEMA 2/IP54 rating
- 5-year warranty

Specifications		Mechanical Outputs	Travel Rotation is limited to $95^{\circ} \pm 5^{\circ}$ maximum, adjustable from $30 . .95^{\circ}$ with a mechanical stop. Position Indicator: Pointer and scale are provided. Manual Override: manual adjustable rotation $-5^{\circ} \ldots 85^{\circ}$.
Control Signal	On-off, SPST control contacts or Triacs (500 mA rated). Floating point control, 24 Vac .		
	ortional, $2 \ldots .10 \mathrm{Vdc}$ or 4 to 20 mAdc with a 500Ω resistor.	Ambient Temperature Limits	Shipping \& Storage: $-40 \mathrm{~F} \ldots 160^{\circ} \mathrm{F}\left(-40 \ldots 71^{\circ} \mathrm{C}\right)$. Operating: $-22 \ldots 140^{\circ} \mathrm{F}\left(-30 \ldots 60^{\circ} \mathrm{C}\right)$. Humidity: $5 \ldots . .95 \%$ RH, non-condensing.
Power Inputs	See table.		
Connections	3 ft . appliance cables, $1 / 2 \mathrm{in}$. conduit connector.		
Electrical Outputs	Position Feedback Voltage "AO": $2 . .10 \mathrm{Vdc}$ (maximum 0.5 mA) output signal for position feedback or operation of	Location	NEMA 1, NEMA 2 (IEC IP54) with conduit connector in down pos.
	up to four slave actuators. Two auxiliary switches available (select models). SPDT 7a resistive @24 Vac or 250 Vac.	Agency Listings	UL 873: Underwriters Laboratories (File \# E9429 Category Temperature-Indicating and Regulating Equipment). CUL: UL LISTED for use in Canada by Underwriters Laboratories. Canadian Standards C22.2 No. 24.

Mx40-717x Series

$150 \mathrm{lb}-\mathrm{in}$ Direct Coupled Damper Actuators

Designed for controlling air dampers in building systems that require fail safe return, with two position, floating or proportional control.

Features

- Direct mount to round or square damper shaft
- Overload protection throughout rotation
- Oil immersed gear train provides continuous lubrication
- Automatic current sensing motor control provides extended reliability and repeatable timing
- Provides true mechanical clockwise or counterclockwise spring return operation for reliable positive close-off in airtight applications

Part	Torque lb-in	Spring		tuator Inpu		Outp		Appro se	Timing in @ $70^{\circ} \mathrm{F}$
Number	(N-m)	Return	Control	Voltage	$\begin{aligned} & \text { VA @ } \\ & 60 \mathrm{~Hz} \end{aligned}$	Feedback	Aux. Sw.	Powered	Spring Return
MA40-7170	150 (17)	CW/CCW	2-Position	120 Vac	8.4	-	No	162	82
MA40-7173				$24 \mathrm{Vac} / \mathrm{dc}$	7.4				
MF40-7173			Floating		8.1				
MS40-7170			2... 10 vdc	120 Vac	8.5	$2 . .10 \mathrm{vdc}$		147	65
MS40-7171				240 Vac	10.8				
MS40-7173				$24 \mathrm{Vac} / \mathrm{dc}$	7.8				

Mx41-730x Series

270 lb-in Direct Coupled Damper Actuators

Mx41-730x Series Spring Return SmartX Actuators are available with Two Position 24 Vac/Vdc, Two Position 100... 230 Vac, and $2 \ldots 10 \mathrm{Vdc}$ input signal applications. It is possible to field configure the $2 \ldots 10 \mathrm{Vdc}$ input signal models for other input signals such as floating and pulse width modulating (PWM).
Features

- Mechanical spring return, manual override, and Brushless DC Motor.
- Stall protected throughout rotation and reversible mounting.
- Models for auxiliary switch applications.
- Direct mount to $1 / 2^{\prime \prime} \ldots 3 / 4^{\prime \prime}$ round or $1 / 2^{\prime \prime} \ldots 11 / 16^{\prime \prime}$ square damper shafts or to $3 / 4^{\prime \prime} \ldots 1.05^{\prime \prime}$ round with the field removal of a clamp insert.
- 95° of rotation, adjustable with mechanical end stops and graduated position indicator showing $0^{\circ} \ldots 95^{\circ}$.
- Can be double-mounted (gang mounting) to accommodate high torque application requirements.
- 5 Year warranty.

Specifications	
Control Signal Optional Control Signal (MS41 models only)	Two Position, 2-10 Vdc ${ }^{1}$ Floating, Pulse width modulating (PWM), Adjustable start point, and Span DC signal inputs with use of the BEL-ZTH US handheld interface module for field programming
Power Inputs	See table.

Connections	3' appliance cable with $18 \mathrm{Ga} .(0.9 \mathrm{~mm})$ conductors and one $1 / 2^{\prime \prime}$ conduit connector -WO2/-WH2 models: Removable terminal blocks
Electrical	Position Feedback: $2 \ldots 10$ Vdc, 0.5 mA max, adjustable with optional BEL-ZTH US Handheld Interface Outputs Module for Field Programming
	Auxiliary Switch: 2 SPDT $3 \mathrm{~A}(0.5 \mathrm{~A}) @ 250$ Vac (see table)

	Torque			Actuator Inp		Outp		Approxim	e Timing	in second	@ $70^{\circ} \mathrm{F}$
Part Number	$\begin{aligned} & \mathrm{Ib}-\mathrm{in} \\ & (\mathrm{~N}-\mathrm{m}) \end{aligned}$	$\begin{aligned} & \text { ppring } \\ & \text { Retur } \end{aligned}$	Control	Voltage	VA @ 60Hz	Feedback	Aux. Switch	Powered	Spring Return	NEMA 4	Heater
MA41-7303	$\begin{aligned} & 270 \\ & (30) \end{aligned}$	CW/CCW	Two Position	24 Vac	16 VA	-	-	75	<20	-	-
MA41-7303-502							2				
MA41-7300				100... 240 Vac	21 VA at $100 \mathrm{Vac}, 29$ VA at 240 Vac		-				
MA41-7300-502							2				
MS41-7303			2...10 Vdc	24 Vac	16 VA	2... 10 Vdc	-	150			
MS41-7303-502							2				
MS41-7303-W02										Yes	
MS41-7303-WH2					16 VA and 21 W heater						Yes

Direct coupled easy to install, and available with torque ranges from 44 to 300 lb -in for floating or proportional control.

High Performance HVAC Applications

Mx41-60xx series

- $44 \mathrm{lb}-\mathrm{in}(5 \mathrm{~N}-\mathrm{m})$ and $88 \mathrm{lb}-\mathrm{in}(10 \mathrm{~N}-\mathrm{m})$ torque.
- Compact, lightweight design
- Easy-to-see position indicator
- Self-adapting capability for maximum flexibility in damper positioning.
- Quiet, low-power operation.
- Manual Override.

Mx41-6153 series

- Synchronous motor technology with stall protection.
- Unique self-centering shaft coupling.
- Manual override.
- $133 \mathrm{lb}-\mathrm{in}(15 \mathrm{~N}-\mathrm{m})$ torque.
- 5° preload as shipped from factory.

Damp and Harsh Environment Applications

Mx41-63xx series

- $300 \mathrm{lb}-\mathrm{in}(34 \mathrm{~N}-\mathrm{m})$ torque
- NEMA Type 4 housing (IEC IP56).
- Custom automatic current sensing motor control provides extended reliability and repeatable timing.
- Direct coupled to the damper shaft with dual industrial hardened universal mounting clamps.
- Integral wiring for proportional control by 2... 10 Vdc or $4 . . .20 \mathrm{~mA}$ dc.

Clockwise or counterclockwise rotation is determined by actuator mounting position.

- Plenum cable standard
- Independently adjustable dual auxiliary switches option available (M×41-6083-502).
- Feedback position output signal available (MS41-6043/6083 series).
- c-UL-us LISTED and CE marked.
- Mechanical range adjustment capabilities.
- Independently adjustable dual auxiliary switches option available (MS41-6153-502)
- Built-in $1 / 2$ " conduit connection.
- c-UL-us LISTED and CE marked.

	Output Torque lb-in		Type of Control				Feedback		Power			Power Input (@60Hz)			Running Time (sec)	Auxiliary Switch	
													¢				$\begin{aligned} & U \\ & \$ \\ & N \\ & N \\ & 0 \\ & i \end{aligned}$
	$\underset{\Sigma}{\Sigma}$	$\begin{aligned} & \overline{\bar{\pi}} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \dot{x} \\ & \dot{\pi} \end{aligned}$	을 픙 은	$\begin{aligned} & 0 \\ & \square \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$	$\begin{gathered} \text { U } \\ \text { O } \\ 0 \\ \vdots \\ \vdots \end{gathered}$	を E N \vdots \vdots	u \vdots \vdots \vdots \vdots	$\begin{gathered} \text { U } \\ \text { B } \\ 0 \\ \vdots \\ \vdots \end{gathered}$		$\begin{aligned} & U \\ & \mathbb{Z} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \vdots \\ & \text { N } \\ & \underset{~}{2} \end{aligned}$				$\begin{aligned} & \text { 이 } \\ & \text { 잉 } \\ & 0 \\ & 0 \end{aligned}$		
MF41-6043	44											2.3			90		
MS41-6043												3.3			90		
MF41-6083	88											2.3			125		
MF41-6083-502																	2
MS41-6083												3.3					
MS41-6083-502																	2
MF41-6153	133											3					
MS41-6153												5	4	4			
MS41-6153-502												5		1		2	
MF41-6343	300	650										5.7	3.9	2.8	<162		
MS41-6343												5.6	3.6	2.4	<145		
MS41-6340												7.5	4.7	3.0			

a - Proportional models with a $2 \ldots 10 \mathrm{VDC}$ control signal accept a $4 \ldots 20 \mathrm{~mA}$ signal with the use of a 500 ohm resistor.

Mx41-60x3 Series $44 \mathrm{lb}-\mathrm{in}$ and 88 lb -in Direct Coupled Damper Actuators

These direct coupled 24 Vac Non-Spring Return rotary electric SmartX Actuators are designed for three position (floating) control of dampers.
Features

- Compact, lightweight design.
- Easy-to-see position indicator.
- Self-adapting capability for maximum flexibility in damper positioning.
- Quiet, low-power operation.

- Plenum cable standard.
- Independently adjustable dual auxiliary switches option available (M×41-6083-502).
- Feedback position output signal available (MS41-6043/6083 series).

Mechanical Outputs	Travel: Normal angle of rotation is 90°, limited to a maximum of 95°. Field adjustable to limit travel on either end of stroke.
Ambient Temperature Limits	Shipping and storage: $-40 \ldots 158^{\circ} \mathrm{F}\left(-40 \ldots 70^{\circ} \mathrm{C}\right)$ Operating: $-25 \ldots 130^{\circ} \mathrm{F}\left(-32 \ldots 55^{\circ} \mathrm{C}\right)$ ambient. NOTE: Check the valve operating temperature limit. The minimum valve temperature limit is $20^{\circ} \mathrm{F}\left(6.7^{\circ} \mathrm{C}\right) 5 \ldots 95 \% \mathrm{RH}$, non-condensing.
Location	NEMA Type 2 (IEC IP54)
Agency Listings	c-UL-us LISTED per UL 873 and CAN C22.2 No.24-93. CE compliant to directives LVD, EMC, and RoHS2.

Part Number	Torque lb-in ($\mathrm{N}-\mathrm{m}$)	Actuator Inputs			Outputs		Approximate Timing in sec. @ $70^{\circ} \mathrm{F}$
		Control	Voltage	VA @ 60Hz	Feedback	Auxiliary Switch	Powered
MF41-6043	44 (5)	Floating	24 Vac	2.3	-	-	90
MF41-6083	88 (10)						125
MF41-6083-502						2-SPDT	
MS41-6043	44 (5)	$\begin{gathered} 0 \ldots 10 \\ \text { vdc } \end{gathered}$		3.3	0... 10 vdc	-	90
MS41-6083	88 (10)						125
MS41-6083-502						2-SPDT	

M×41-6153 Series

$133 \mathrm{lb}-\mathrm{in}$ Direct Coupled Damper Actuators

The direct-coupled, 24 Vac , non-spring return electronic SmartX actuator is designed for modulating and three-position control of building HVAC dampers requiring up to 133 lb -in ($15 \mathrm{~N}-\mathrm{m}$) torque.

Features

- Synchronous motor technology with stall protection
- Unique self-centering shaft coupling
- 5° preload as shipped from factory
- Mechanical range adjustment capabilities
- Independently adjustable dual auxiliary switches option available (MS41-6053-502).
- Built-in $1 / 2^{\prime \prime}$ conduit connection

Specifications	
Control Signal	MF41-6153 - Floating three-position control, 24 Vac. MS41-6153, MS41-6153-502 - Proportional, 0 to 10 Vdc; input resistance 100 kW .
Power Inputs	See Table.
Connections	$3 \mathrm{ft}$. (0.9 m) long, 18 AWG leads
Electrical Outputs	Position output signal (wires 9-2) MS41-6153 Series Voltage-output 0... 10 Vdc Maximum output current $\pm 1 \mathrm{~mA}$

Mechanical Outputs	Nominal angle of rotation 90° Maximum angular rotation 95°
Ambient Temperature Limits	Operating: $-25^{\circ} \mathrm{F} \ldots 130^{\circ} \mathrm{F}\left(-32^{\circ} \mathrm{C} . . .55^{\circ} \mathrm{C}\right)$ Storage: $-40^{\circ} \mathrm{F} \ldots 158^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C} . . .70^{\circ} \mathrm{C}\right)$ Ambient humidity: 95% rh (non-condensing)
Location	NEMA 1/IP54 accableing to EN 60529
Agency Listings	c-UL-us LISTED per UL 873 and CAN C22.2 No.24-93. CE compliant to directives LVD, EMC, and RoHS2.

Part Number	$\begin{aligned} & \text { Torque lb-in } \\ & (\mathrm{N}-\mathrm{m}) \end{aligned}$	Actuator Inputs			Outputs		Approximate Timing in sec. @ 70 ${ }^{\circ} \mathrm{F}$
		Control	Voltage	VA @ 60Hz	Feedback	Auxiliary Switch	Powered
MF41-6153	133 (15)	Floating	24 Vac	3	-	-	125
MS41-6153		$0 . . .10 \mathrm{vdc}$		5	$0 . . .10 \mathrm{vdc}$		
MS41-6153-502						2-SPDT	

Mx41-634x Series

300 lb -in Direct Coupled Damper Actuators

Direct Coupled SmartX Actuators are designed to be used in both damper and valve control applications. The MS41-634x series actuators are over the shaft non-spring return actuators compatible with $2 \ldots 10 \mathrm{Vdc}$ or $4 \ldots 20 \mathrm{~mA} \mathrm{dc}{ }^{1}$ control signals.

Features

- Custom automatic current sensing motor control provides extended reliability and repeatable timing
- Direct coupled to the damper shaft with dual industrial hardened universal mounting clamps
- Clockwise or counterclockwise rotation is determined by actuator mounting position
- Accurate 92° travel digitally controlled
- Integral position indication scale
- Oil immersed gear train provides continuous lubrication
- Rated for operating temperatures up to $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$
- Five year warranty

Specifications

AM-621

AM-675

AM-688

(2)

AM-689

AM-686

		Spring Return Actuators									Non Spring Return Actuators						
Part Number	Description				M $\stackrel{1}{0}$ $\stackrel{1}{4}$ \vdots \sum	$\frac{\frac{\pi}{N}}{\frac{\pi}{N}} \frac{\pi}{i}$	$\frac{\stackrel{N}{N}}{\stackrel{1}{\underset{N}{ \pm}}}$			$\begin{aligned} & \text { M } \\ & \stackrel{1}{x} \\ & \stackrel{1}{4} \\ & \underset{2}{0} \end{aligned}$		$\begin{aligned} & \text { m } \\ & 0 \\ & \hline \\ & \frac{1}{4} \\ & \stackrel{1}{\Sigma} \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \hline \\ & \frac{1}{4} \\ & \underset{\Sigma}{\infty} \end{aligned}$	$\begin{aligned} & \frac{n}{i} \\ & \frac{1}{4} \\ & \sum \end{aligned}$	$\begin{aligned} & \frac{n}{6} \\ & \frac{1}{4} \\ & \sum \end{aligned}$	$\begin{aligned} & \underset{\sim}{3} \\ & \underset{y}{+} \\ & \frac{1}{4} \\ & \stackrel{1}{\Sigma} \end{aligned}$	$\underset{3}{3}$ \vdots $\stackrel{1}{4}$ $\underset{\Sigma}{0}$
AM-621	Round Shaft Extension																
AM-671abcd																	
$\text { AM- } 672^{\text {abcd }}$	Mounting Bracket																
AM-674	Weather Shield \&																
AM-675	Base																
AM-676	Shaft Extension																
AM-686	Position Indicator																
AM-687 ${ }^{\text {e }}$	V-clamp																
AM-688	Replacement Universal Clamp																
AM-689	Rotation Limiter																
AM-690-R	Crank Arm																
AM-692 ${ }^{\text {f }}$	V-bolt																
AM-693-R ${ }^{\text {gh }}$	Crank Arm Kit																

a - AM-693 crank arm kit required.
b - Cannot be used with $M \times 41-634 \times$ or $M \times 40-717 \times$ series actuators
c - Drill appropriate mounting holes where needed.
d - The large "C"-shaped clamps included in AM-693 crank arm kit are required for mounting the actuator. Drill appropriate mounting holes where needed.
e - For shafts to $1.05^{\prime \prime}$ diameter or $5 / 8^{\prime \prime}$ square
f - For shafts to $3 / 4^{\prime \prime}$ and $1.05^{\prime \prime}$ diameter (with AM-690 and AM-691, respectively).

- Use the self-tapping screws and flat washers provided in kit to mount actuator.
- AM-692 V-bolt kit required. The AM-693-R damper linkage kit is used in conjunction with the AM-687 or AM-688 universal clamps to provide a mechanical linkage between the damper actuator and the damper shaft when a direct coupling is not possible.
i- Used in conjunction with the AM-687 or AM-688 universal clamps for crankarm functionality in non-direct mounting applications.

		Spring Return Actuators									Non Spring Return Actuators								
Part Number	Description						$\frac{\frac{\pi}{N}}{\frac{1}{\overleftarrow{N}}}$		$\begin{aligned} & \text { N } \\ & \underset{N}{\mathbf{N}} \\ & \stackrel{N}{N} \end{aligned}$				$\begin{aligned} & \infty \\ & 0 \\ & \hline 0 \\ & \frac{1}{4} \\ & \stackrel{1}{4} \end{aligned}$		$\begin{aligned} & \frac{\pi}{\grave{n}} \\ & \frac{1}{4} \\ & \frac{1}{4} \end{aligned}$	$\begin{aligned} & \frac{\pi}{\varrho} \\ & \frac{1}{4} \\ & \sum \\ & \hline \end{aligned}$	$\begin{aligned} & \text { m} \\ & \text { en } \\ & \frac{1}{4} \\ & \stackrel{1}{4} \end{aligned}$		$\frac{\underset{\sim}{\circ}}{\frac{1}{\dot{t}}}$
AM-703	Span Adjustment																		
AM-705																			
AM-706	Positioner																		
AM-708	500Ω Resistor																		
AM-709	Position Indicator \& Stroke Limiter																		
AM-710 ${ }^{\text {a }}$	V-clamp																		
AM-711																			
AM-712	Crank Arm Adaptor K																		
AM-713	Bracket																		
AM-714	Weather Shield																		
AM-715	Crank Arm Adaptor Kit																		
AM-717	Replacement Universal Clamp																		
AM-726																			
AM-727	Crank Arm Adaptor																		
AM-728 ${ }^{\text {b }}$	Conduit Adaptor																		
AM-751	Anti-rotation Bracket																		
AM-801	Mx41-730x-xxx Actuator Crank Arm Kit																		
AM-802	Mx41-730x-xxx Actuator Crank Arm Kit with Actuator Mounting Bracket and Two Ball Joints																		
AM-803	9-3/4" damper Shaft Extension for $5 / 16^{\prime \prime}$... $1^{\prime \prime}$ Diameter Round Shafts																		
AM-804	Jackshaft Linkage (requires AM-805 Support Plate for Mx41-73xx Actuators)																		
AM-805	Support Plate for Mx4173xx Actuators																		
BEL-ZTH	US Handheld Interface Module for Field Programming of the MS41-7303-xxx Models																		

- For shafts up to $3 / 4^{\prime \prime}(19 \mathrm{~mm})$ diameter round up to $1 / 2^{\prime \prime}(13 \mathrm{~mm})$.
b-Cannot be used when creating a linked valve/actuator assembly.

1. Damper Actuators

Damper Accessories

		Spring Return Actuators									Non Spring Return Actuators						
Part Number	Description		m \vdots \vdots \vdots \vdots \sum				$\stackrel{\text { n }}{\stackrel{\text { N}}{\stackrel{1}{5}}}$			$\begin{aligned} & \text { M } \\ & \text { on } \\ & \text { x } \\ & \underset{\sim}{0} \end{aligned}$		∞ 0 \vdots $\stackrel{1}{4}$ $\stackrel{1}{4}$ Σ	0 0 0 1 \mathbf{N} \sum	$\begin{aligned} & \frac{n}{i} \\ & \frac{i}{\dot{N}} \\ & \stackrel{1}{\Sigma} \end{aligned}$	n \vdots $\dot{1}$ $\dot{ \pm}$ \vdots	$\underset{\sim}{2}$ $\stackrel{1}{2}$ $\stackrel{1}{4}$ $\stackrel{1}{\Sigma}$	$\begin{aligned} & \text { m} \\ & \text { N } \\ & \stackrel{i}{4} \\ & \underset{\Sigma}{\infty} \end{aligned}$
AM-735	Crank Arm Kit																
AM-737	Universal Crank Arm ${ }^{\text {a }}$																
AM-741	Weather Shield																
AM-753 ${ }^{\text {b }}$	Mounting Clamp																
AM-754 ${ }^{\text {c }}$	Mounting Clamp																
AM-756	Metric Conduit Adaptor																
AM-758	Short "U" Mounting Bracket																
AM-759	Tall "U" Mounting Bracket																
AM-760	Slotted "L" Mounting Bracket																
AM-761	7-inch Anti-rotation Bracket																
AM-762	9-inch Anti-rotation Bracket																

[^2]
1. Damper Actuators

Product Description

The 0453L, light duty damper actuators are designed for a variety of two-position, spring return, damper applications. The 0453L uses a two-wire thermostat control.
The 0453 H , medium duty damper actuators are designed for a variety of two-position, Spring Return damper applications. The 0453H uses a two-wire thermostat control.
The 0453R, heavy duty damper actuators are designed for a variety of two-position, motor open and motor closed damper applications. The 0453R uses a three-wire thermostat control.

Features

- Available with end switch
- Linkage or direct drive available
- Hysteresis synchronous motor with a "lost motion" drive to protect the gear train from closing shock

Specifications

Inputs	
Voltage $\quad 24 \mathrm{Vac}$ @	$\begin{array}{r} \text { /60 Hz, 110/120 Vac @ } 50 / 60 \mathrm{~Hz}, \\ 220 / 230 \mathrm{Vac} @ 50 / 60 \mathrm{~Hz} . \end{array}$
Power	See Model Table
Connections	Internal junction box, 18" leads, cord sets.
Outputs	
Mechanical	Optional End Switch 10 A @ 120 Vac.
Direction of Rotation	CW or CCW rotation is available.
Linkage	Customer supplied.
Direct Drive output shaft with maximum	For 5/16" maximum damper engagement of $7 / 8^{\prime \prime}$.
Environment	
Temperature limits:	
Shipping \& Storage	$-40 \ldots 169^{\circ} \mathrm{F}\left(-40 \ldots 71^{\circ} \mathrm{C}\right)$
Operating	$0 \ldots 120^{\circ} \mathrm{F}\left(-17 \ldots 49^{\circ} \mathrm{C}\right)$
Humidity	Non-condensing.
Shipping Weight	$\begin{array}{r} \text { 0453L \& 0453H: } 1.2 \mathrm{lbs}(544 \mathrm{~g}) ; \\ 0453 \mathrm{R}: 1.7 \mathrm{lbs}(771 \mathrm{~g}) . \end{array}$
Location	NEMA 1.

0453X Series Two-Position
 Damper Actuators

Regulatory Compliance
(All are rated for use in Plenum spaces).
-Models 0453L, 0453H:
c-UR-us RECOGNIZED
Components, safety evaluated per UL 60730-1 \& -2-14, (including US FCC
Part-15 Class-B emissions) and safety evaluated per CSA/CAN E60730-1 \& -2-14, (including ICES-003 Class-B emissions). -Models 453L, 453H, 453R: CE Mark compliant, safety evaluated per EN 60730-1 \& -2-14, (including EN 61000-6-2 EU immunity \& EN 61000-6-3 EU emissions).

Optional Accessories	
$453-52$	$6 \ldots 12^{\prime \prime}$ damper shaft kit.
$453-69$	$12 \ldots 20^{\prime \prime}$ damper shaft kit.

Model Number	Model Table							
	Torque Rating in.-oz.				Power		Stroke Speed in Seconds	
	Motor Driven		Spring Return				Motor Driven	Spring Return
	0°	84°	0°	84°	W	VA		
0453L	45	25	17	25	6.5	7	$\begin{aligned} & 18 @ 60 \mathrm{~Hz} \\ & 22 @ 50 \mathrm{~Hz} \end{aligned}$	6 @ 50/60 Hz
0453H	55	35	35	55	6.5	10	$\begin{aligned} & 27 @ 60 \mathrm{~Hz} \\ & 32 @ 50 \mathrm{~Hz} \end{aligned}$	8 @ 50/60 Hz
0453R	150	150	-	-	6.5	7	$\begin{aligned} & 37 @ 60 \mathrm{~Hz} \\ & 45 @ 50 \mathrm{~Hz} \end{aligned}$	-

Collaborative Smart Building IoT Platform
Drives Efficiency and Ensures Comfort

2. VB-7000 Series Globe Valves and Sizing and Selection

2. VB-7000 Series Globe Valves and Sizing and Selection

Venta VB-7200 Series
2-Way Globe Valves

Venta VB-7300 Series
3-Way Globe Valves

Specify Six Part Number Fields to determine the Valve Actuator Assembly Part Number

1) ${ }_{\text {c }}^{\text {Control }}$	2) ${ }_{\text {c }}^{\text {Timim and Valve }}$	3) ${ }_{\text {c }}^{\text {Pipe End }}$ Conoction	4) $\begin{aligned} & \text { Actuato or } \\ & \text { Linkege }\end{aligned}$	5) ${ }_{\text {c }}^{\text {Pataern }}$ code	6)) Port Code $\begin{gathered}\text { cuvalue }\end{gathered}$
V B \square	- $0 \bigcirc \bigcirc$	\bigcirc	$\bigcirc \bigcirc$	- \square		\bigcirc

Refer to the guide below.
For water, steam, glycol and similar non flammable, non toxic fluids, choose based on the Pg. 36, 2. VB-7000 Sizing and Selection Above 2", go to Pg. 97, 5. VB-8/9000 Series Globe Valves Sizing and Selection .
Ordering VB-7000 Series Valves

2. VB-7000 Series Globe Valves and Sizing and Selection

2-Way Brass Trim Valves with Soft Seats

Brass Trim with Soft Seats

a - To minimize noise, ensure the flow rate in the piping is less than $10 \mathrm{ft}(3 \mathrm{~m}) /$ second and the differential pressure is less than $35 \mathrm{psi}(241 \mathrm{kPa})$. Operating with differential pressures above 35 psi may result in additional noise but is acceptable up to $87 \mathrm{psi}(600 \mathrm{kPa})$. Operating within the cavitation zone may result in noise and internal valve damage.
b - Maximum recommended differential pressure in open position. Do not exceed recommended differential pressure (pressure drop), as integrity of parts may be affected.
c - Refer to Seat Leakage Classes table.

Stainless Steel Trim with Soft Seats

a - To minimize noise, ensure the flow rate in the piping is less than $10 \mathrm{ft}(3 \mathrm{~m}) /$ second and the differential pressure is less than $35 \mathrm{psi}(241 \mathrm{kPa})$. Operating with differential pressures above 35 psi may result in additional noise but is acceptable up to $87 \mathrm{psi}(600 \mathrm{kPa})$. Operating within the cavitation zone may result in noise and internal valve damage.
b-Maximum recommended differential pressure in open position. Do not exceed recommended differential pressure (pressure drop), as integrity of parts may be affected. Exceeding maximum recommended differential pressure voids product warranty.
c - Refer to Seat Leakage Classes table.

Stainless Steel Trim with Metal to Metal Seats

2-Way Stainless Trim (Metal to Metal)					Threaded NPT
Series Part Number				VB-7273-0-4-	VB-7283-0-4-
Pipe Sizes				½"...2"	
Stem Action				Up Open	Up Closed
ANSI Pressure Class				250 psi (up to 400 psig below $150^{\circ} \mathrm{F}$)	
ANSI Seat Leakage ${ }^{\text {c }}$				ANSI III	
Control Media and Temperature				$20 \ldots 400^{\circ} \mathrm{F}\left(-7\right.$ to $204^{\circ} \mathrm{C}$) water (up to 60% glycol/water solution), low pressure, treated steam	
Flow Curve				Modified Linear	
Allowable ΔP for Water ${ }^{\text {b }}$				$87 \mathrm{psi}(600 \mathrm{kPa}) \mathrm{Max}$. for normal life ${ }^{\text {a }}$	
Max Inlet Pressure, saturated steam				$150 \mathrm{psi}(1034 \mathrm{kPa})$	
Max $\Delta \mathrm{P}$ for sizing, saturated steam ${ }^{\text {b }}$				80% of inlet pressure up to 15 psig and 42% of absolute (gauge pressure plus 14.7) inlet pressure above 15 psig inlet	
Max $\Delta \mathrm{P}$ at close-off, saturated steam ${ }^{\text {b }}$				Inlet pressure (150 psi) (actuator must be rated to provide close-off pressure)	
Size	Cv	Kvs	Rangeability	Valve Body Part Numbers	
$1 / 2{ }^{\prime \prime}$	0.4	0.3	5:1	VB-7273-0-4-01	VB-7283-0-4-01
	1.3	1.1	15:1	VB-7273-0-4-02	VB-7283-0-4-02
	2.2	1.9	25:1	VB-7273-0-4-03	VB-7283-0-4-03
	4.4	3.8	40:1	VB-7273-0-4-04	VB-7283-0-4-04
$3 / 4$ "	5.5	4.8	50:1	VB-7273-0-4-05	VB-7283-0-4-05
	7.5	6.5	60:1	VB-7273-0-4-06	VB-7283-0-4-06
1"	10	8.7	60:1	VB-7273-0-4-07	VB-7283-0-4-07
	12	10.4	75:1	VB-7273-0-4-08	VB-7283-0-4-08
$11 / 4 "$	20	17.3		VB-7273-0-4-09	VB-7283-0-4-09
$11 / 2^{\prime \prime}$	28	24.2		VB-7273-0-4-10	VB-7283-0-4-10
2"	40	34.6		VB-7273-0-4-11	VB-7283-0-4-11

a - To minimize noise, ensure the flow rate in the piping is less than $10 \mathrm{ft}(3 \mathrm{~m}) /$ second and the differential pressure is less than $35 \mathrm{psi}(241 \mathrm{kPa})$. Operating with differential pressures above 35 psi may result in additional noise but is acceptable up to $87 \mathrm{psi}(600 \mathrm{kPa})$. Operating within the cavitation zone may result in noise and internal valve damage.
b - Maximum recommended differential pressure in open position. Do not exceed recommended differential pressure (pressure drop), as integrity of parts may be affected. Exceeding maximum recommended differential pressure voids product warranty.
c - Refer to Seat Leakage Classes table.

MORE INFO
F-26752

316 Stainless Bodies with Soft Seats

2-Way Stainless Trim \& Body Soft Seats				Threaded NPT - 316 Stainless Body	
Series Part Number				VBS-9263-0-4-xx	
Pipe Sizes				$1 / 2{ }^{\prime \prime}$ \& $3 / 4$	
Stem Action				Up Closed Only	
Seats				316 Stainless on PTFE	
ANSI Pressure Class				300 psi (up to 400 psig below $150^{\circ} \mathrm{F}$)	
ANSI Seat Leakage ${ }^{\text {b }}$				ANSI IV	
Control Media and Temperature				$20 . .400^{\circ} \mathrm{F}\left(-7 \ldots 204^{\circ} \mathrm{C}\right)$	
Flow Curve				Modified Linear	
Allowable $\Delta \mathrm{P}$ for Water				35 psi (241 kPa) Max. for normal life ${ }^{\text {a }}$	
Max Inlet Pressure, saturated steam				$100 \mathrm{psi}(690 \mathrm{kPa})$	
Max $\Delta \mathrm{P}$ for sizing, saturated steam				80% of inlet pressure up to 15 psig and 42% of absolute (gauge pressure plus 14.7) inlet pressure above 15 psig inlet - Refer to steam charts.	
Max $\Delta \mathrm{P}$ at close-off, saturated steam				Inlet pressure (100 psi) (actuator must be rated to provide close-off pressure) and withstand media temperature	
Size	Cv	Kvs	Rangeability	Valve Body Part Numbers	
1/2"	0.1	0.087	5:1	VBS-9263-0-4-31	CAUTION: Pressure reducers do not lower temperatures from boilers significantly. Select only valve actuators that withstand actual pipe temperatures near the boiler output temperature.
	0.22	0.19	5:1	VBS-9263-0-4-33	
	0.3	0.26	5:1	VBS-9263-0-4-34	
	0.4	0.3	5:1	VBS-9263-0-4-1	
	0.75	0.65	15:1	VBS-9263-0-4-35	
	0.95	0.82	15:1	VBS-9263-0-4-36	
	1.3	1.1	15:1	VBS-9263-0-4-2	
	1.75	1.5	25:1	VBS-9263-0-4-37	
	2.2	1.9	25:1	VBS-9263-0-4-3	
	2.8	2.4	35:1	VBS-9263-0-4-38	
	3.25	2.8	35:1	VBS-9263-0-4-39	
	3.6	3.0	35:1	VBS-9263-0-4-4	
$3 / 4$ "	4.3	3.7	40:1	VBS-9263-0-4-45	
	5.0	4.1	40:1	VBS-9263-0-4-5	
	6.2	5.0	50:1	VBS-9263-0-4-6	

a - Operating within the cavitation zone or an operating differential pressure above $35 \mathrm{psi}(241 \mathrm{kPa}$) may result in noise and internal valve damage.
b - Refer to Seat Leakage Classes table.

2. VB-7000 Series Globe Valves and Sizing and Selection

2-Way Brass Trim Valves with Soft Seats, Union

Brass Trim with Soft Seats - Copper Connection

a - To minimize noise, ensure the flow rate in the piping is less than $10 \mathrm{ft}(3 \mathrm{~m}) /$ second and the differential pressure is less than $35 \mathrm{psi}(241 \mathrm{kPa})$. Operating with differential pressures above 35 psi may result in additional noise but is acceptable up to $87 \mathrm{psi}(600 \mathrm{kPa})$. Operating within the cavitation zone may result in noise and internal valve damage.
b - Maximum recommended differential pressure in open position. Do not exceed recommended differential pressure (pressure drop), as integrity of parts may be affected. Exceeding maximum recommended differential pressure voids product warranty.
c - The VB-7214-0-4- and VB-7224-0-4-1/2"...2" series valves all have rangeabilities greater than 100:1.
d - These part numbers do not have RoHs compliant nuts and tail pieces.
e - Refer to Seat Leakage Classes table.
MORE INFO

F-26752

2. VB-7000 Series Globe Valves and Sizing and Selection

2-Way Brass Trim Valves
 with Soft Seats, Union

Brass Trim Soft Seat Union for Radiators and Other Applications

2-Way Brass Trim Body Type				Union Angle NPT	Union Straight NPT	Union Straight NPT
Series Part Number				VB-7211-0-3-	VB-7211-0-4-	VB-7221-0-4-
Pipe Sizes				$1 / 2^{\prime \prime} \ldots 11 /{ }^{\prime \prime}$		
Stem Action				Up Open	Up Open	Up Closed
ANSI Pressure Class				250 psi (up to 400 psig below $150^{\circ} \mathrm{F}$)		
ANSI Seat Leakage ${ }^{\text {e }}$				Class IV	Designed to ANSI V with ANSI IV above $35 \mathrm{psi}(241 \mathrm{kPa})$ close off with long term seat leakage dependent on proper water conditioning maintenance of the system.	
Control Media and Temperature				$20 \ldots 281^{\circ} \mathrm{F}\left(-7 \ldots 138^{\circ} \mathrm{C}\right)$ water (up to 60% glycol/water solution), low pressure, treated steam		
Flow Curve				Modified Equal Percentage		
Allowable ΔP for Water ${ }^{\text {b }}$				$\begin{gathered} 35 \mathrm{psi}(241 \mathrm{kPa}) \\ \text { Max. for normal life } \\ \hline \end{gathered}$	$87 \mathrm{psi}(600 \mathrm{kPa}) \mathrm{Max}$. for normal life ${ }^{\text {a }}$	
Max inlet pressure for saturated steam				$35 \mathrm{psi}(240 \mathrm{kPa})$		
Max ΔP for sizing, saturated steam ${ }^{b}$				80% of inlet pressure up to 15 psig and 42% of absolute (gauge pressure plus 14.7) inlet pressure above 15 psig inlet		
Max $\Delta \mathrm{P}$ at close-off, saturated steam ${ }^{\text {b }}$				Inlet pressure (35 psi) (actuator must be rated to provide close-off pressure)		
Size	Cv	Kvs	Rangeability Greater Than ${ }^{\text {c }}$	Valve Body Part Numbers		
$1 / 2$ "	0.4	0.3	5:1	VB-7211-0-3-01	VB-7211-0-4-01 ${ }^{\text {c }}$	VB-7221-0-4-01 ${ }^{\text {c }}$
	1.3	1.1	15:1	VB-7211-0-3-02	VB-7211-0-4-02 ${ }^{\text {c }}$	VB-7221-0-4-02 ${ }^{\text {c }}$
	2.2	1.9	25:1	VB-7211-0-3-03	VB-7211-0-4-03 ${ }^{\text {c }}$	VB-7221-0-4-03 ${ }^{\text {c }}$
	4.4	3.8	40:1	-	VB-7211-0-4-04 ${ }^{\text {c }}$	VB-7221-0-4-04 ${ }^{\text {c }}$
	5.0	4.3	40:1	VB-7211-0-3-04	-	-
$3 / 4 "$	5.5	4.8	50:1	VB-7211-0-3-05	VB-7211-0-4-05 ${ }^{\text {c }}$	VB-7221-0-4-05 ${ }^{\text {c }}$
	7.5	6.5	60:1	-	VB-7211-0-4-06 ${ }^{\text {c }}$	VB-7221-0-4-06 ${ }^{\text {c }}$
	8.5	7.4	50:1	VB-7211-0-3-06	-	-
$1 "$	10	8.7	60:1	-	VB-7211-0-4-07 ${ }^{\text {c }}$	VB-7221-0-4-07c
	14	12.1	60:1	VB-7211-0-3-07	VB-7211-0-4-08 ${ }^{\text {c }}$	VB-7221-0-4-08 ${ }^{\text {C }}$
	16	13.8	75:1	VB-7211-0-3-08	-	-
11/4"	20	17.3	75:1	-	VB-7211-0-4-09 ${ }^{\text {c }}$	VB-7221-0-4-09 ${ }^{\text {c }}$
	22	19	75:1	VB-7211-0-3-09	-	-

a - To minimize noise, ensure the flow rate in the piping is less than $10 \mathrm{ft}(3 \mathrm{~m}) /$ second and the differential pressure is less than $35 \mathrm{psi}(241 \mathrm{kPa})$. Operating with differential pressures above 35 psi may result in additional noise but is acceptable up to $87 \mathrm{psi}(600 \mathrm{kPa})$. Operating within the cavitation zone may result in noise and internal valve damage.
b-Maximum recommended differential pressure in open position. Do not exceed recommended differential pressure (pressure drop), as integrity of parts may be affected. Exceeding maximum recommended differential pressure voids product warranty.
c - The VB-7211-0-4-xx and VB-7221-0-4-xx series valves all have rangeabilities greater than 100:1.
e - Refer to Seat Leakage Classes table.

Mixing Valves

a - To minimize noise, ensure the flow rate in the piping is less than three meters (10ft)/second and the differential pressure is less than $35 \mathrm{psi}(241 \mathrm{kPa})$. Operating within the cavitation zone or an operating differential pressure above $35 \mathrm{psi}(241 \mathrm{kPa})$ may result in additional noise but is acceptable up to $87 \mathrm{psi}(600 \mathrm{kPa})$.
b - The VB-7363-0-4- series has stainless steel trim.
c - These part numbers do not have RoHs compliant nuts and tail pieces.
d - Refer to Seat Leakage Classes table.

3-Way Flow Patterns

MORE INFO
F-26752

Diverting and Sequencing Valves

3-Way Brass Trim Diverting and Sequencing Valves Body Types			Diverting Threaded NPT	5/8" OD 45° SAE Flared Sequencing
Series Part Numbers			VB-7323-0-4-	VB-7332-0-4-
Pipe Size			1/2"...2"	1/2" I.D.
Stem Flow Action			Stem Up Closes A Port and Opens AB Port to the Common B Port	Stem Up Opens B to AB and Stem Down Opens A to AB, Stem Mid Position A and B are Both Closed
Stem Force Allowed			300 Lbs.	
ANSI Pressure Class			250 psi (up to 400 psi below $150^{\circ} \mathrm{F}$)	250 psi (up to 400 psi below $150^{\circ} \mathrm{F}$)
ANSI A Port Seat Leakage ${ }^{\text {a }}$			ANSI Class III	
Control Media and Temperature			$20 \ldots 281^{\circ} \mathrm{F}\left(-7 \ldots 138^{\circ} \mathrm{C}\right)$ water (up to 60% glycol/water solution)	
Water Flow Curve			Modified Linear	Sequencing, Modified Linear
Allowable $\Delta \mathrm{P}$ for water			$35 \mathrm{psi}(241 \mathrm{kPa}) \mathrm{Max}$. for normal Life	
Size	Cv	Kvs	Valve Body Part Numbers	
$1 / 2{ }^{\prime \prime}$	2.2	1.9	-	VB-7332-0-4-03
	4.4	3.8	VB-7323-0-4-04	VB-7332-0-4-04
$3 / 4$ "	7.5	6.5	VB-7323-0-4-06	-
1"	14	12.1	VB-7323-0-4-08	
11/4"	20	17.3	VB-7323-0-4-09	
11/2"	28	24.2	VB-7323-0-4-10	
2 "	40	34.6	VB-7323-0-4-11	

2. VB-7000 Sizing and Selection

2 \& 3-Way Valves Sizing for Water

Sizing for Water

Two-Position

Two-position control valves are normally selected "line Size" to keep pressure drop at a minimum. If it is desirable to reduce the valve below line size, then 10\% of "available pressure" (that is, the pump pressure differential available between supply and return mains with design flow at the valve location) is normally used to select the valve.

Proportional and Floating

Proportional and floating control valves are usually selected to take a pressure drop equal to at least 50% of the "available pressure." As "available pressure" is often difficult to calculate, the normal procedure is to select the valve using a pressure drop at least equal to the drop in the coil or other load being controlled (except where small booster pumps are used) with a minimum recommended pressure drop of $5 \mathrm{psi}(34 \mathrm{kPa})$. When the design temperature drop is less than $60^{\circ} \mathrm{F}\left(33^{\circ} \mathrm{C}\right)$ for conventional heating systems, higher pressure drops across the valve are needed for good results.

2.1 Conventional Heating System

Design Temperature Load Drop ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right.$)	Recommended Pressure Drop (\% of Available Pressure)	Multiplier on Load Drop
$60(33)$ or more	50%	$1 \times$ Load Drop
$40(22)$	66%	$2 \times$ Load Drop
$20(11)$	75%	$3 \times$ Load Drop

Reducer Affects

On full flow bodies, offset the affects of directly connected reducer(s) by choosing flow coefficients 6% or more higher.

Cv (Flow Coefficient) Determination

The valves' water capacity is based on the following formula:

$$
C v=\frac{G P M}{\sqrt{\Delta P}} \text { or } C V=G P M \quad \sqrt{\frac{\text { Specific Gravity }}{\Delta P}}
$$

Where:
$\mathrm{Cv}=$ Coefficient of flow
$C v$ is defined as the flow in GPM with $\Delta P=1$ psi with the valve completely open
GPM $=$ U.S. gallons per minute $\left(60^{\circ} \mathrm{F}, 15.6^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{P}=$ Differential pressure in psi (pressure drop)

Proportional 3-Way Valves

Recommended Pressure Drop - Bypass Application: 50\% of "available pressure," or equal to pressure drop through the load at full flow.
3-Way valves in the return used to control output by throttling water flow to the load (bypass applications) are controlling output in the same manner as throttling 2-Way valves, and must be selected using the same high pressure drops if good control results are to be obtained.
Recommended Pressure Drop - Constant Flow Applications:
20% of "available pressure," or equal to $1 / 4$ of the pressure drop through the load at full flow.
3-Way valves used with individual pumps to control output by varying water temperature to the load (constant flow applications) are controlling output by mixing two water sources at different temperatures and do not require high pressure drops for good control results.

Water Capacity Graph Instructions

To select the appropriate valve Cv from the Graph:

1. Select the required flow from the "Flow in GPM" axis.
2. Select available pressure drop from the "Pressure Drop in psi" axis.
3. Select the appropriate line and follow to the Capacity Cv (Kv) listing and choose the closest valve Cv flow coefficient.
4. Confirm the selection by calculation from the water equations.

2-Way Flow, Temperature \& Materials

2.2 Flow Characteristics

2-Way valves with brass plugs have modified equal percentage flow curves and valves with stainless steel plugs have modified linear flow curves. With modified equal percentage flow curves, for equal increments of valve stem stroke, the change in flow rate with respect to valve stroke may be expressed as a constant percent of the flow rate at the time of the change. The change of flow rate with respect to valve stroke is relatively small when the valve plug is near the valve seat and relatively high when the valve plug is nearly wide open. With modified linear flow curves, the flow is directly proportional to the valve stem position.

2.3 Temperature Pressure Ratings

Consult the appropriate valve linkage installation instructions for the effect of valve body ambient temperatures on specific actuators. Ratings conform with published values and disclaimer.
VB-72xx-0-4-P (Cast Bronze Body)
Standards: Pressure to ANSI B16.15 Class 250 with 400 psig up to $150^{\circ} \mathrm{F}$ decreasing to 321 psig at 281° F, ASTM B584

CAUTION: Pressure/temperature ratings are for the body only, not the piping. Consult ANSI 816.22 for ratings of solder joint fittings. The lowest piping component ratings are the high limit.

2.4 VB-7200 2-Way Globe Valves Material Specifications

Packing and Seal materials: Polytetrafluoroethylene (PTFE), ethylene propylene diene monomer (EPDM)

2. VB-7000 Sizing and Selection

3-Way Flow, Temperature \& Materials

2.7 Flow Characteristics

3-Way mixing valves are designed so that the flow from inlet ports, (A and $B)$, to the outlet port (AB) is modified linear.

3-Way Diverting valves are designed so that the flow from the inlet port (B) to the outlet ports (A and $A B$) is modified linear.
Sequencing valves have both ports (A and B) closed off in the center of stroke and have modified linear flow for each port as it opens to supply it's coil.
Rangeability is greater than 100:1 for both the A and B ports.

3-Way Mixing and Diverting Valves

VB-7332 Sequencing Valve

2.8 Temperature Pressure Ratings

Consult the appropriate valve linkage Installation Instructions sheet for the effect of valve body ambient temperatures on specific actuators. Ratings conform with published values and disclaimer.

VB-73xx-0-x-P (Cast Bronze Body)
Standards: Pressure to ANSI B16.15 Class 250 with 400 psig up to $150^{\circ} \mathrm{F}$ decreasing to 321 psig at $281^{\circ} \mathrm{F}$, ASTM B584.
CAUTION: Pressure/temperature ratings are for the body only, not the piping. Consult ANSI 816.22 for ratings of solder joint fittings. The lowest piping component ratings are the high limit.

2.9 VB-7300 3-Way Globe Valves Material Specifications

Material		VB-7313, VB-7314	VB-7312, VB-7332,	VB-7363
Body		Bronze ASTM, B584		
A Port Seat		Brass		316 Stainless Steel
B Port Seat		Bronze ASTM, B584		
Stem		316 Stainless Steel		
Plug		Brass		316 Stainless Steel
Packing		Spring-Loaded PTFE/EPDM		
A Port Seal	$1 / 2$ " and $3 / 4$ "	PTFE	Metal to Metal	PTFE
	1"...2"	EPDM		
B Port Seal	$1 / 2$ " and $3 / 4$ "	Metal to Metal		Metal to Metal 316 Stainless Stee
	1"...2"			

Packing and Seal materials: Polytetrafluoroethylene (PTFE), ethylene propylene diene monomer (EPDM)

Cavitation Limitations on Valve Pressure Drop

A valve selected with too high a pressure drop can cause erosion of seals and/or wire drawing of the seat. In addition, can cause noise, damage to the valve trim (and possibly the body), and choke the flow. Do not exceed the maximum differential pressure (pressure drop) for the valve selected.
The following formula can be used on higher temperature water systems, where cavitation could be a problem, to estimate the maximum allowable pressure drop across the valve:

$$
P_{m}=0.5(P 1-P v)
$$

Where:
$\mathrm{P}_{\mathrm{m}}=$ Maximum allowable pressure drop (psi)
P1 = Absolute inlet pressure (psia)
$\mathrm{Pv}=$ Absolute vapor pressure (psia)
Note: Add 14.7 psi to gauge supply pressure to obtain absolute pressure value. For example, if a valve is controlling $200^{\circ} \mathrm{F}$ water at an inlet pressure of 18 psig , the maximum pressure drop allowable would be:

$$
\mathrm{Pm}=0.5[(18+14.7)-11.53]=10.6 \mathrm{psi}
$$

(Vapor pressure of $200^{\circ} \mathrm{F}$ water is 11.53 psia)
Systems where cavitation is shown to be a problem can sometimes be adjusted to provide higher downstream back pressures. Valves having harder seat materials should be furnished if velocities are excessive.
2.11 Vapor Pressure Of Water

Temp. (${ }^{\circ} \mathrm{F}$)	Pressure (psia)	Temp. (${ }^{\circ} \mathrm{F}$)	Pressure (psia)	Temp. (${ }^{\circ} \mathrm{F}$)	Pressure (psia)	Temp. (${ }^{\circ}$)	Pressure (psia)
40	0.12	90	0.70	140	2.89	190	9.34
50	0.18	100	0.95	150	3.72	200	11.53
60	0.26	110	1.28	160	4.74	210	14.12
70	0.36	120	1.69	170	5.99	220	17.19
80	0.51	130	2.22	180	7.51	230	20.78

2.12 Cavitation Limitations on Valve Pressure Drop

Maximum Allowable Differential Pressure ($\Delta \mathrm{P}$)for Water Valves.
2. VB-7000 Sizing and Selection

Saturated Steam Valve Selection ½"...6" Valves (2-Way only)

2.13 Saturated Steam

STEAM VALVE SELECTION									
Dp (psi.)	2	5	10	15	25	35	50	75	100
	"Low Pressure Steam"				"High Pressure Steam"				
Lb/Hour	Select proportional valve Cv close to chart value.								
2	0.16	0.15	0.13	0.12	0.04	0.03	0.02	0.02	0.01
3	0.24	0.23	0.20	0.18	0.05	0.04	0.03	0.02	0.02
5	0.41	0.38	0.34	0.31	0.09	0.07	0.06	0.04	0.03
8	0.65	0.60	0.54	0.49	0.15	0.12	0.09	0.06	0.05
11	0.90	0.83	0.74	0.67	0.20	0.16	0.12	0.09	0.07
16	1.3	1.2	1.1	1.0	0.29	0.23	0.18	0.13	0.10
24	2.0	1.8	1.6	1.5	0.44	0.35	0.27	0.19	0.15
35	2.9	2.6	2.3	2.1	0.64	0.51	0.39	0.28	0.22
50	4.1	3.8	3.4	3.1	0.91	0.73	0.56	0.40	0.32
74	6.0	5.6	5.0	4.5	1.4	1.1	0.83	0.60	0.47
109	8.9	8.2	7.3	6.7	2.0	1.6	1.2	0.88	0.69
160	13	12	11	10	2.9	2.3	1.8	1.3	1
240	20	18	16	15	4.4	3.5	2.7	1.9	1.5
350	29	26	23	21	6.4	5.1	3.9	2.8	2.2
500	41	38	34	31	9.1	7.3	5.6	4	3.2
750	61	56	50	46	14	11	8	6	5
1100	90	83	74	67	20	16	12	9	7
1600	131	120	107	98	29	23	18	13	10
2400	196	180	161	147	44	35	27	19	15
3500	285	263	235	214	64	51	39	28	22
5000	408	376	335	306	91	73	56	40	32
7000	571	526	469	428	128	102	78	57	44

Selection Instructions
Warning: Pressure reducers do not lower boiler temperatures significantly, resulting in superheated steam.
Select only steam valves which can withstand temperatures near the original boiler temperature.
Caution: Do not size a steam valve with a pressure drop greater than 42% of the absolute pressure.
Actuator must be rated to provide adequate close off pressure.
Two Position Control: Unless otherwise specified, select line-size, 2-Way valves, stem-up open or closed and are normally sized using a minimum of 10% of inlet pressure (psig).

Body Size	Cv	Port Code
$1 / 2$ "	0.10	31
	0.22	33
	0.40	01
	0.75	34
	1	36
	1.3	02
	1.8	28
	2.2	03
	2.9	30
	3.25	39
	4.4	04
$3 / 4$ "	5.5	05
	6.3	41
	7.5	06
1"	8.2	51
	9	52
	10	07
	12	08
11/4"	14	61
	16	62
	18	63
	20	09
11/2"	22	71
	24	72
	28	10
2"	31	81
	34	82
	40	11
21/2"	56	12
3"	85	13
4"	145	14
5"	240	15
6 "	370	16

Proportional

1. Go to rows which are nearest to minimum pounds/hour flow required.
2. Go to columns nearest to the assured supply pressure.
3. Note Cv values at the column/row intersection.
4. Select the listed valve Cv which provides adequate flow.
5. If reducers are used, expect flow to be reduced as much as 15%.

Reference

For further information, download CA-28 Control valve sizing, F-13755, from iPortal.
The following is the terminology and the equations for the table above:

"Low Pressure" steam (Up to 15 psig.)	"High Pressure" steam (Above 15 psig.)
$\mathrm{Cv}=\mathrm{Q} /\left(2.1 \times\left(\Delta \mathrm{P} \times(\mathrm{P} 1+\mathrm{P} 2)^{\wedge 0.5}\right.\right.$	$\mathrm{Cv}=\mathrm{Q} /(1.38 \times \mathrm{P} 1 \mathrm{abs})$

2. VB-7000 Sizing and Selection

VB-7000 \& VBS 9263 ½"...2" Hydraulic \& Electric Close-Off

Note: The following tables offer a quick guide to valve actuator combination / close-off ratings.

2.14 Seat Leakage Classes

ANSI/FCI 70-2 Leakage Class Class II	Maximum Seat Leakage
Class III	0.5% of rated CV

Close-off Ratings

Nominal actuator close-off ratings range from ANSI III (metal to metal trim) to ANSI IV and ANSI V (EPDM and PTFE Discs). Refer to VB-7000 Bronze Bodies for your specific application requirements.
Note: Valve body and actuator size determine the close-off capabilities. Example: All $1 / 2^{\prime \prime}, 2$-Way globe valves will make the same close-off, regardless of the Cv rating, for a given actuator.

2.15 Electric Spring Return (SR)

VB-7000 \& VBS-9263 Hydraulic \& Electric Close-Off (psi)
 Stem Up Open, Closed \& Mixing

All are 250 psi. close-off. VB-7323 Diverting: Bottom port is the common.

	MP/MPR-5200		MA-5200		M40-704x	Mx51	710x	Mx41-707x	M900Ax-VB	Mx51-720x	M41-715x	M40-717x
Linkage	AV-7600				AV-611	None		AV-602	None		AV-602	
Actuator Code	Choose code from assembly and actuator sections.											
Pipe Size	Power Down Closed a,c,d	Spring Up Closed	$\begin{aligned} & \text { Power } \\ & \text { Down } \\ & \text { Closed } \\ & \text { a,c,d } \end{aligned}$	$\begin{aligned} & \hline \text { Spring } \\ & \text { Up } \\ & \text { Closed } \\ & \text { b,c,d } \end{aligned}$	Power or Spring							
						N.O. ${ }^{\text {a }}$	N.C. ${ }^{\text {b }}$					
$1 / 2$ "	130	130	130	200	250	250	250	250	250	250	250	250
$3 / 4$ "	80	80	80	130	250	200	200	250	250	250	250	250
$1 "$	40	40	40	50	125	150	90	180	180	230	250	250
11/4"	25	25	25	35	75	90	60	120	110	150	200	250
$11 / 2^{\prime \prime}$	15	25	60	35	50	60	35	80	75	100	140	160
2"	10	14	35	20	25	32	20	40	40	65	80	120
												Do not use.

a Normally Open (N.O.) assembly using stem up open valve body.
b Normally Closed (N.C.) assembly using stem up closed valve body or 3-Way A port.
c With appropriate AV-7600 springs.
d For 3-Way mixing close-offs you must consider power down and spring-up close offs.

2.16 Electric Non-Spring Return (NSR)

VB-7000 \& VBS-9263 Electric Close-Off (psi)
Stem Up Open, Closed \& Mixing. VB-7323 Diverting: Bottom port is the common. All are 250 psi. close-off

	M400A-VB	Mx41-6043	Mx41-6083	M800A-VB	Mx41-6153	M1500-VB
Linkage	None	AV-611	AV-611	None	AV-611	None
Actuator Code	Choose code from assembly and actuator sections					
Pipe Size	250	225	250	250	250	250
$1 / 2$ "						
$3 / 4$ "	198	225	200	250	250	250
$1 "$	92	100	130	207	250	250
11/4"	56	60	100	130	225	250
11/2"	37	40	70	88	140	177
2"	19	20	40	48	80	98

Note: The valve body and actuator size determine the close off capabilities. For example: all $1 / 2$ " 2 -Way globe valves will make the same close off regardless of the Cv rating for the same actuator. Close offs shown are minimums.

2. VB-7000 Sizing and Selection

2.17 VB-7000 Pneumatic Close-Off Ratings (psi)

	Actuator				MK-2	(6 Sq	ch)			
	Optional Positioner					42309-1				
	Linkage					AV-740				
	Spring Range		3 to 7 ps			to 10 p			to 13 p	
	Actuator Code		201			202			203	
	Supply Air (Psi.)	15/20	15	20	15/20	15	20	15/20	15	20
	Stem Closed Position ${ }^{\text {a }}$	Up N.C.	Down	Down	Up N.C.	Down	Down	Up N.C.	Down	Down
	$1 / 2$ "	-	130	220	50	60	170	130	-	90
Two	$3 / 4$ "	-	80	130	30	40	120	60	-	60
Way	1 "	-	35	70	9	15	50	30	-	25
and	11/4"	-	20	40	-	8	30	15	-	15
Mixing	$11 / 2^{\prime \prime}$	-	14	29	-	5	20	10	-	9
	2"	-	6	14	-	-	10	-	-	-
Diverting: bottom port as the common. Use MK-46xx below for tightest close-off.										

a - In two- or 3-Way mixing "A" port valves, Up N.C. is normally closed in up position. Down closes a N.O. valve or 3-Way mixing "B" port.
2.18 VB-7000 Pneumatic Close-Off Ratings (psi)

	Actuator	MK-46xx (11 Square Inch)								
	Optional Positioner	AK-42309-500								
	Linkage	AV-401								
	Spring Range	3 to 7 psi.			5 to 10 psi.			8 to 13 psi.		
	Actuator Code	301			302			303		
	Supply Air (Psi.)	15/20	15	20	15/20	15	20	15/20	15	20
	Stem Closed Positiona	Up N.C.	Down	Down	Up N.C.	Down	Down	Up N.C.	Down	Down
Two Way and Mixing	$1 / 2$ "	30	250	250	100	120	250	250	10	200
	$3 / 4$ "	20	180	250	70	80	180	160	-	120
	1"	5	90	150	30	35	100	60	-	65
	11/4"	-	50	90	15	20	60	40	-	40
	11/2"	-	30	60	10	10	40	35	-	25
	2"	-	15	30	-	-	25	15	-	10

Diverting: bottom port as the common. All sizes are balanced for 250 psi close-off.
a - In two- or 3-Way mixing "A" port valves, Up N.C. is normally closed in up position. Down closes a N.O. valve or 3-Way mixing "B" port.

2.19 VB-7000 Pneumatic Close-Off Ratings (psi)

	Actuator	MK-66xx (50 Square Inch, half inch stroke)								
	Optional Positioner	AK-42309-500								
	Actuator \& Linkage	MK-6601-301			MK-6611-302			MK-6621-303		
	Linkage	AV-430								
	Spring Range	3 to 8			5 to 10			8 to 13		
	Actuator Code	611			612			613		
	Supply Air (Psi.)	15/20	15	20	15/20	15	20	15/20	15	20
	Stem Closed Position ${ }^{\text {a }}$	Up N.C.	Down	Down	Up N.C.	Down	Down	Up N.C.	Down	Down
	11/2"	40	170	250	80	110	230	170	40	160
Way and Mixing	2"	20	90	160	50	60	120	90	20	90
Caution! Diverting: bottom port as common. Actuator may be too strong, use smaller actuator.										

a - In two- or 3-Way mixing "A" port valves, Up N.C. is normally closed in up position. Down closes a N.O. valve or 3-Way mixing "B" port.

3. VB-7000 Series Globe Valve and Actuator Assemblies

3. VB-7000 Series Globe Valve and Actuator Assemblies

Mx4x-6xxx and Mx4x-7000 Series Spring and Non-Spring Return Actuator/Linkage Assemblies with SmartX actuators.

2-Way Linked Globe Valve Assembly (Non-Spring Return Model shown)

Globe Valve Assemblies

The VA, VF, and VS-7000 series Linked Globe Valve Assemblies are complete actuator/valve assemblies that accept two-position, floating or proportional control, respectively, from a DDC system or from a thermostat, for control of hot water, chilled water and steam coils. These valve assemblies consist of linked spring return and non-spring return actuators mounted on $1 / 2^{\prime \prime} \ldots 2$ " (15 mm... 50 mm) 2-Way and 3-Way globe valve bodies, using a specially designed linkage assembly. 3-Way assemblies are available for mixing ($1 / 22^{\prime \prime} \ldots 2^{\prime \prime}$) and Diverting ($1 / 22^{\prime \prime} \ldots 2^{\prime \prime}$) applications.
Typical applications include reheat on VAV boxes, fan coil units, hot and chilled water coils in air handling units, unit ventilators, and central system applications.
Kits are available separately to allow field assembly of SmartX actuators to valve bodies.

VB-72xx 2-Way Globe Valve with MA/MP/MPR-5XXX Hydraulic Actuator

VB-73xx 3-Way Globe Valve with MK-66x1 Pneumatic Actuator

Seat Leakage Classes

ANSI/FCI 70-2 Leakage Class	Maximum Seat Leakage
Class II	0.5% of rated Cv
Class III	0.1% of Rated CV
Class IV	0.01% of Rated CV
Class V	0.0005 ml per minute per inch of orifice diameter per psi differential

3. VB-7000 Series Globe Valve and Actuator Assemblies

Globe Valve Assembly Selection Procedure

When selecting a globe valve assembly, first determine the applicable codes for the control signal type, valve body configuration, end connection, port size and actuator according to Assembly Ordering on the next pages. Select a globe valve assembly part number as follows:

1. Control Signal Type, Valve Body Configuration and End Connection

Refer to Assembly Ordering and select the appropriate codes for the part-number fields.

2. Valve Size (Flow Coefficient)

If the required flow coefficient (Cv) has not been determined, do so as follows:
a. Refer to Sizing and Selection to calculate the required Cv .
b. Select the nearest available Cv value and corresponding valve body port code from Assembly Ordering.

Globe Valve Assembly Selection Procedure

3. Actuator \& Linkages

Select the appropriate actuator and code, according to Assembly Ordering on the next pages based on the control signal type, required valve normal position, and voltage requirements. For detailed actuator information, refer to Pg. 65, 4. VB-7000 Series Globe Valve Actuators and Linkages for applicable actuator specifications.

Note: Linkages shown in Specification tables are supplied with the actuator. When shown in Optional Accessories the linkage must be ordered separately.

4. Close-off Pressure

Confirm, with respect to Actuator Close-Off Capacity, that the selected actuator and valve body combination provides sufficient close-off pressure. If no close-off pressure is shown, the valve body/actuator combination is not valid.

5. Available Space

If available space is a consideration, check the appropriate figure in the separately available Wiring, Dimensions and Reference document F-28125 from the Exchange Download Center.

	Description	Family	Electric Non-Spring Return Operation				Electric Spring Return Operation			Pneumatic Spring Return Operation	
			Proportional	Floating	Pulse Width Modu lated	Two Position	Proportional	Floating	Two Position	Two Position	Proportional with Positive positioner
$\begin{aligned} & \times \\ & \stackrel{\times}{\overleftarrow{x}} \\ & \text { E } \end{aligned}$	Originally developed by Schneider Electric in the United States under the DuraDrive brand. Upgraded in 2015 to SmartX with new features.	M $\times 51-710 \mathrm{x}$					\bullet	-	-		
		$\begin{aligned} & M \times 51-720 x, \\ & M \times 61-720 \times 1 \end{aligned}$					-	\bullet	\bullet		
		MG350V	\bullet	\bullet	\bullet	\bullet					
	Developed by Schneider	$\begin{aligned} & \text { M400, M800, } \\ & \text { M1500 } \\ & \hline \end{aligned}$	\bullet			3-Wire					
$\stackrel{\pi}{0}$	Europe. Introduced to North America in 2008 because of its flexibility and ease of setup. ${ }^{2}$	M900 (Coming soon to North America!)					\bullet		3-Wire		
$\begin{aligned} & \text { ত} \\ & \text { © } \\ & \text { - } \end{aligned}$	Earlier North American actuators developed by Schneider Electric; (Barber Colman, Siebe, Invensys). still popular because of their value and reliability.	MK-2690, MK-4xxx, MK-6xxx, MK-8xxx								\bullet	\bullet
		MA-521x, MP-521x, MP-541x, MP-5513, MPR-5613					\bullet		\bullet		

[^3]
3. VB-7000 Series Globe Valve and Actuator Assemblies

Ordering VB-7000 Globe Valve Assemblies

Specify Seven Part Number Fields to determine the Valve Actuator Assembly Part Number

Ordering VB-7000 Globe Valve Assemblies - SmartX

SmartX Actuators

Specify Six Part Number Fields
 to determine the Valve Actuator Assembly Part Number

Ordering VB-7000 Globe Valve Assemblies (Other Actuators)

Hydraulic, Pneumatic \& Forta Actuators

The configuration of the valve assembly determines the valve stem position and flow, as shipped from the factory. See the table below.

Valve Assemblies	Valve Body Action	Factory Shipped Position		Action
		Valve Stem	Flow	
Vx-721x-xxx-4-P	2-Way Stem Up Open	Up	Open	A to $A B$ Flow decreases as actuator rotates CW
Vx-722x-xxx-4-P	2-Way Stem Up Closed		Closed	A to AB Flow increases as actuator rotates CW
$V x-731 x-x x x-4-P$	3-Way Mixing		Flow B to AB	A to $A B$ Flow increases as actuator rotates CW B to AB Flow decreases as actuator rotates CW
$V x-732 x-x x x-4-P$	3-Way Diverting			B to A Flow increases as actuator rotates CW B to $A B$ Flow decreases as actuator rotates CW

Port CodeUp to 2" (Cv of 41)					
Body Size	2-Way		3-Way		
	Cv*	Port Code	Cv		Port Code
			Mixing	Diverting	
$1 / 2$ "	0.4	01	-	-	
	1.3	02	2.2	2.2	02
	2.2	03	-	-	
	4.4	04	4.4	4.4	04
$3 / 4$ "	5.5	05	-	-	
	7.5	06	7.5	7.5	06
$1 "$	10.0	07	-	-	
	14.0	08	14.0	15.0	08
$11 / 4$ "	20	09	20.0	20.0	09
$11 / 2^{\prime \prime}$	28	10	28.0	28.0	10
2 "	40	11	41.0	40.0	11

*Brass trim models listed.

[^4]
3. VB-7000 Series Globe Valve and Actuator Assemblies

Choose a valve assembly having a close-off pressure capability sufficient for the application. Not all valve body and actuator combinations are available factory-assembled. Some combinations must be field-assembled.

2-Way Linked Globe Valve Assemblies with Linear Series Spring Return Actuators

b - To determine a specific part number, see Pg. 50, Ordering VB-7000 Globe Valve Assemblies for the relevant part series.

d - Close-off ANSI IV (.01\%) for soft seats.
e-Close-off pressure ratings describe only the differential pressure which the actuator can close-off with adequate seating force. Consult valve body specifications
for other limitations. The rating value is the pressure difference between the inlet and outlet ports.
f - Normally open (N.O.) assembly using stem up open valve body.
g - Normally closed (N.C.) assembly using stem up closed valve body.
h - Metric thread 15 to $80 \mathrm{~mm}(\mathrm{Rp} \mathrm{1/2}$ to Rp 3).
j - Valve body and actuator size determine the close-off capabilities. Example: All $1 / 2^{\prime \prime}, 2$-Way globe valves will make the same close-off regardless of the $C v$ rating for a given actuator.

½"...2" 2-Way Globe Valves with Linked SR Actuators

Choose a valve assembly having a close-off pressure capability sufficient for the application.

2-Way Linked Globe Valve Assemblies with Spring Return Actuators								
2-Way Spring Return Linked Globe Valve Assemblies								
					Actuator Torque Rating (minimum)			
					$35 \mathrm{lb}-\mathrm{in}$ ($4 \mathrm{~N}-\mathrm{m}$)	$60 \mathrm{lb}-\mathrm{in}$ ($7 \mathrm{~N}-\mathrm{m}$)	$\begin{aligned} & 133 \mathrm{lb}-\mathrm{in} \\ & (15 \mathrm{~N}-\mathrm{m}) \end{aligned}$	$\begin{aligned} & 150 \mathrm{lb}-\mathrm{in} \\ & (17 \mathrm{~N}-\mathrm{m}) \end{aligned}$
I		,			Actuator Model (Actuator Code)			
θ					Two-Position MA40-7040 MA40-7041 MA40-7043 (536) Floating MF40-7043 (536) Proportional MS40-7043 (536) MS40-7043-501 (537)	Two-Position MA41-707x Floating MF41-7073 Proportional MS41-7073 (546) MS41-7073-502 (547)	Two-Position MA41-715x Floating MF41-7153 Proportional MS41-7153 (556) MS41-7153-502 (557)	Two-Position MA40-717x Floating MF40-7173 Proportional MS40-717x (576)
					Note: Not all factory actuator codes are available.			
					Linkage Kit Part Number			
					AV-611 (1⁄2"...2")	AV-602 (1"...2")	AV-602 (11/4"...2")	
					Actuator Close-off Pressure psi ${ }^{\text {cd }}$			
Part Number ${ }^{\text {a }}$	Code	in. (mm)				Single Actuator		
	01	½ (15)	0.4	0.3	250	-		-
Vx-7214-xxx-4-P	02		1.3	1.1				
	03		2.2	1.9				
$V x-7213-x x x-4-P$	04		4.4	3.8				
$V x-7221-x x x-4-P$	05	3/4 (20)	5.5	4.8				
$23-x$	06		7.5	6.5				
$V x-7263-x x x-4-P$	07	1 (25)	10.0	8.7	125	180		
$V x-7273-x x x-4-P$	08		14.0	12	125	180		
VxS-9263-xxx-4-P	09	11/4 (32)	20.0	17	75	120	200	
$\begin{aligned} & V x-7213-x x x-4-P \\ & V x-7223-x x x-4-P \end{aligned}$	10	11⁄2 (40)	28.0	24	50	80	140	160
	11	2 (50)	40.0	35	25	40	80	120

[^5]
3. VB-7000 Series Globe Valve and Actuator Assemblies

½"...2" 3-Way Globe Valves with Linear SR Actuators

Choose a valve assembly having a close-off pressure capability sufficient for the application. Not all valve body and actuator combinations are available factory-assembled. Some combinations must be field-assembled.

b-Models without actuator codes are not offered as factory assemblies. Purchase the actuator and the valve body separately and field assemble. For available factory assemblies, consult the price schedule.
c - To determine a specific part number, see Pg. 50, Ordering VB-7000 Globe Valve Assemblies for the relevant part series.
$\mathrm{d}-\mathrm{Cv}=\mathrm{gpm} / \sqrt{ } \Delta \mathrm{P}$ (where $\Delta \mathrm{P}$ is measured in psi.) \quad kvs $=\mathrm{Cv} / 1.156$
e - Close-off pressure ratings describe only the differential pressure which the actuator can close-off with adequate seating force. Consult valve body specifications for other limitations. The rating value is the pressure difference between the inlet and outlet ports.

3. VB-7000 Series Globe Valve and Actuator Assemblies

½"...2" 3-Way Globe Valves with Linked SR Actuators

Choose a valve assembly having a close-off pressure capability sufficient for the application. Not all valve body and actuator combinations are available factory-assembled. Some combinations must be field-assembled.

[^6]
3. VB-7000 Series Globe Valve and Actuator Assemblies

Choose a valve assembly having a close-off pressure capability sufficient for the application. Not all valve body and actuator combinations are available factory-assembled. Some combinations must be field-assembled.

a - To determine a specific part number, see Pg. 50, Ordering VB-7000 Globe Valve Assemblies for the relevant part series.
$\mathrm{b}-\mathrm{kvs}=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{Cv}=\mathrm{kvs} \times 1.156$
c - All Vx-72xx leakage ratings are ANSI V to 35 psi and ANSI IV above 35 psi; with the exception of $V x-7273$ and $V x-7283$ (ANSI III).
d-Close-off pressure ratings describe only the differential pressure which the actuator can close-off with adequate seating force. Consult valve body specifications for other limitations. The rating value is the pressure difference between the inlet and outlet ports.
f - Shown for field assembly.

3. VB-7000 Series Globe Valve and Actuator Assemblies

½"...2" 3-Way Globe Valves with Linked NSR Actuators

Choose a valve assembly having a close-off pressure capability sufficient for the application. Not all valve body and actuator combinations are available factory-assembled. Some combinations must be field-assembled.

3-Way Linked Globe Valve Assemblies with Non-Spring Return Actuators

a - To determine a specific part number, see Pg. 50, Ordering VB-7000 Globe Valve Assemblies for the relevant part series.
b - kvs $=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{Cv}=\mathrm{kvs} \times 1.156$
c - Mixing Valves A port seat leakage ANSI IV, B port seat leakage ANSI III, Diverting Valves seat leakage is ANSI III.
e - Dual actuators are not available as factory assemblies.
Some factory assembly may be available but components may be ordered separately for field assembly.
f - Shown for field assembly.

MORE INFO
Scan the QR code or visit the link below for more information.

Visit:
http://goo.gl/BnGiYc

3. VB-7000 Series Globe Valve and Actuator Assemblies

MG350V Installed on a VB-7000 Globe Valve

End View

Actuator Diagram

Applicable Literature
MG350V Economy Model - Standard Speed, MG350V-24F, MG350V24M

- F-27907 Specification Sheet
- F-27852 Installation Instructions

MG350V Economy Plus Model - Fast Speed + Feedback/Alarms
MGF350V-24FP, MGF350V-24MP

Side View

½"...2" 2/3-Way Globe Valves with MG350V NSR Actuators

Select valve actuator combination having sufficient close-off for application.

Compatible Two-Way Valve Series				
Body		Close-off Ratings, psi (kPa) ${ }^{\text {a }}$		Valve Bodies
P Code	Size	MGF350V-24FP, MGF350V-24MP	$\begin{aligned} & \text { MG350V-24F, } \\ & \text { MG350V-24M } \end{aligned}$	VB-7211-0-3-P, VB-7211-0-4-P, VB-7212-0-4-P, VB-7213-0-4-P, VB-7214-0-4-P, VB-7221-0-4-P, VB-7222-0-4-P, VB-7223-0-4-P, VB-7224-0-4-P, VB-7253-0-4-P, VB-7263-0-4-Pa, VB-7273-0-4-P, VB-7283-0-4-P
-01, -02, -03, -04	$1 / 2^{\prime \prime}(15 \mathrm{~mm})$	219 (1510)	250 (1724)	
-05, -06	$3 / 4^{\prime \prime}(20 \mathrm{~mm})$	135 (931)	157 (1082)	
-07, -08	1" (25 mm)	67 (462)	79 (545)	
-09	11/4" (32 mm)	42 (290)	49 (338)	
Compatible Three-Way Valve Series				
-02, -04	$1 / 2 "$ (15 mm)	219 (1510)	250 (1724)	VB-7312-0-4-P, VB-7313-0-4-P, VB-7314-0-4-P, VB-7363-0-4-P,
-06	$3 / 4 "$ (20 mm)	135 (931)	157 (1082)	
-08	1" (25 mm)	67 (462)	79 (545)	
-09	$11 / 4 "$ (32 mm)	42 (290)	49 (338)	
$\begin{gathered} -04,-06,-08,-09, \\ -10,-11 \end{gathered}$	1/2"...2"	250 (1712)		VB-7323-0-4-P

a - VB-7263 series valves with port codes from $-28 \ldots-82$ have the same close-off ratings as the respective matching pipe size VB-7263 series valves with port codes $-01 \ldots-11$.

Forta Mx00A-VB Valve Actuator Mounted on a 2-Way VB-7000 Series Valve

Select a Valve Actuator combination having sufficient close off for the application.

Actuator Valves for Forta Non-Spring Return Actuators					
Valve Body ${ }^{\text {a }}$			Close-off Ratings, psi (kPa)		
2-Way Valves ${ }^{\text {bc }}$	P Code	Size	M400A (VB) 674	M800A (VB) 680	M1500A (VB) 686
$\begin{aligned} & \text { VB-7211-0-3-P } \\ & \text { VB-7211-0-4-P } \\ & \text { VB-7212-0-4-P } \\ & \text { VB-7213-0-4-P } \\ & \text { VB-7214-0-4-P } \\ & \text { VB-7221-0-4-P } \\ & \text { VB-7222-0-4-P } \\ & \text { VB-7223-0-4-P } \\ & \text { VB-7224-0-4-P } \\ & \text { VB-7253-0-4-P } \\ & \text { VB-7263-0-4-P } \\ & \text { VB-7273-0-4-P } \\ & \text { VB-7283-0-4-P } \end{aligned}$	-01, -02, -03, -04	$1 / 2^{\prime \prime}(15 \mathrm{~mm})$	250 (1712)	250 (1712)	
	-05, -06	$3 / 4 "(20 \mathrm{~mm})$	198 (1356)	250 (1712)	
	-07, -08	1" (25 mm)	92 (630)	207 (1418)	
	-09	111/" (32 mm)	56 (384)	130 (890)	
	-10	1112" (40 mm)	37 (253)	88 (603)	177 (1212)
	-11	2" (40 mm)	19 (130)	48 (329)	98 (671)
3-Way Valves ${ }^{\text {b }}$	P Code	Size	M400A (VB)	M800A (VB)	M1500A
	-02, -04	$1 / 2^{\prime \prime}(15 \mathrm{~mm})$	250 (1712)	250 (1712)	
	-06	$3 / 4 "$ (20 mm)	198 (1356)	250 (1712)	
VB-7312-0-4-P	-08	1" (25 mm)	92 (630)	207 (1418)	
VB-7314-0-4-P	-09	11/4" $(32 \mathrm{~mm})$	56 (384)	130 (890)	
	-10	11/2" (40 mm)	37 (253)	88 (603)	
	-11	2" (40 mm)	19 (130)	48 (329)	
VB-7323-0-4-P	-04, -06, -08, -09, -10, -11	½"..2"	250	(1712)	Do not use

a - Not all bodies are available for all port codes.
b- Substitute VU- for VB- and add the actuator code to substitute for the -0- (i.e., 674, 680, etc.).
c - Not all valve styles are available in all sizes or "P" codes.

3. VB-7000 Series Globe Valve and Actuator Assemblies

½"...2" Globe Valves with Hydraulic SR Actuators

Select Actuator Type or Actuator Code (xxx) series with correct Input Signal having sufficient close-off for the application. Not all valve body and actuator combinations are available factory-assembled. Some combinations must be field-assembled.

Actuator Valves for the Hydraulic Spring Return Actuators							
Actuator					MA-521x	MP-5xxx	MPR-561x
Input Signal					2-Position Electric	Vdc	mAdc
Actuator Code (xxx)					a		a
	Factory Available Valve Assembly	Valve Body	P Code	Size	Close-off Pressure Rating (psi)		
N.O.	$\begin{aligned} & \text { VA-7213-2xx-4-P } \\ & \text { VS-7213-xxx-4-P } \end{aligned}$	$\begin{aligned} & \text { VB-7213-0-4-P } \\ & \text { VB-7214-0-4-P } \\ & \text { VB-7253-0-4-P } \\ & \text { VB-7273-0-4-P } \end{aligned}$	-01, -02, -03, -04	1/2"(15 mm)	130		
			-05, -06	$3 / 4 "(20 \mathrm{~mm})$	80		
			-07, -08	1" (25 mm)	40		
			-09	11/4" (32 mm)	25		
			-10	111/2" (40 mm)	15		
			-11	2" (40 mm)	10		
N.C.	$\begin{aligned} & \text { VA-7223-2xx-4-P } \\ & \text { VS-7223-xxx-4-P } \end{aligned}$	$\begin{aligned} & \text { VB-7223-0-4-P } \\ & \text { VB-7224-0-4-P } \\ & \text { VB-7263-0-4-P } \\ & \text { VB-7283-0-4-P } \end{aligned}$	-01, -02, -03, -04	$1 / 2^{\prime \prime}(15 \mathrm{~mm})$	200	130	
			-05, -06	$3 / 4{ }^{\prime \prime}(20 \mathrm{~mm})$	130	80	
			-07, -08	1" (25 mm)	50	40	
			-09	11/4" (32 mm)	35	25	
			-10	11/2" (40 mm)	35	25	
			-11	2" (40 mm)	20	14	

a - Hydraulic actuators require AV-7600-1 linkage if field assembled. MP-541x and MPR-561x require AV-601 linkage extension for field assembly.

3-Way Hydraulic Valve Actuator Close-Off Ratings

3-Way Hydraulic Valve Actuator Close-Off Ratings						
Linkage ($1 / 2 . .2{ }^{\prime \prime}$)				AV-7600-1 ${ }^{\text {a }}$	AV-7600-1	
Input Signal				Electronic Vdc \& 4 $\ldots .20 \mathrm{~mA}$	SPDT Floating \& 2-Position	
Actuator Code (XXX)				2XX	2XX	
Actuator Type				$\begin{aligned} & \text { MP-5X1X-XXX } \\ & \text { MPR-561X } \end{aligned}$	MA-521X	
Factory Available Valve Assemblies	Valve Body	P Code	Size (in.)	Actuator Close-Off Pressure RatingS (psi) ${ }^{\text {d d e }}$		
				SUf "A" ${ }^{\text {" }}$ " ${ }^{\text {P }}$ " B "	SUf "A"	SDf "B"
VA-7313-XXX-4-P VS-7313-XXX-4-P	$\begin{aligned} & \text { VB-7313-0-4-P } \\ & \text { VB-7314-0-4-P } \end{aligned}$	-02,-04	1/2	130	200	130
		-06	3/4	80	130	80
		-08	1	40	50	40
		-09	11/4	25	35	25
		-10	$11 / 2$	15	35	25
		-11	2	10	20	14
$\begin{aligned} & \text { VA-7323-XXX-4-P } \\ & \text { VS-7323-XXX-4-P } \end{aligned}$	VB-7323-0-4-P	-04	1/2	250		
		-06	3/4			
		-08	1			
		-09	11/4			
		-10	11/2			
		-11	2			
VF-7313-XXX-4-P	VB-7312-0-4-P VB-7313-0-4-P VB-7314-0-4-P	-02,-04	$1 / 2$ or 5/8	-	200	130
		-06	$3 / 4$		130	80
		-08	1		50	40
		-09	$11 / 4$		35	25
		-10	$11 / 2$		20	15
		-11	2		14	10

a - MP-541X, MPR-5XXX use AV-7600-1 or AV-600 and AV-601.
b - Factory shipments have unpainted large springs. For $0 \ldots 10$ volt and $4 \ldots 20 \mathrm{~mA}$ controllers, use blue and booster springs.
c - Close-off ratings for mixing or sequencing valves: ($S U=$ " A " port, $S D=$ " B " port). " A " port (SU) ratings equal pressure at port " A " minus pressure at port " B "; " B "
port (SD) ratings equal pressure at port " B " minus pressure at port "A".
d-Close-off pressure ratings describe only the differential pressure which the actuator can close-off to standards with adequate seating force. Consult valve body specifications for other limitations.
e - Diverting valves may be used in mixing applications with minor affects on flow.
f - SU- Stem Up; SD- Stem Down.

3. VB-7000 Series Globe Valve and Actuator Assemblies

½"...2" 2-Way and 5/8" 3-Way Globe Valves with Pneumatic
 Actuators

Select Actuator Type or Actuator Code (xxx) series with correct Input Signal having sufficient close-off for the application. If selecting component parts, select Valve Body and Positive Positioner if required.

*Not all actuator codes are factory assembled. If the assembly is no longer available but a close-off is shown on the tables above you may order the components that make up the assembly for field assembly. Note: Only bronze bodies listed. VBS-9263-0-4-P stainless steel bodies to -06 size are available with the same close off performance.

3-Way 5/8" Globe Valves with Pneumatic Actuators																									
Positive Positioner					AK-42309-500									AK-42309-500											
Actua					MK-2690									MK-4601			MK-4611			MK-4621			MK-4621-422		
Fact	Actuator Code				201			202			203			301			302			303			313		
Spring	Range (psig)				$3 . . .7$			5... 10			8... 13			3... 6			5... 10			10... 13			10...11.25		
Linkag					AV-7400									AV-401						AV-430					
Actuator Close-Off Pressure Rating (psi) ${ }^{\text {ab }}$																									
Supply Air Pressure (psig)					15/20	15	20	15/20	15	20	15/20	15	20	15/20	15	20	15/20	15	20	15/20	15	20	15/20	15	20
Stem Positionc					su	SD	SD	su	SD	SD	su	su	SD	su	SD	SD									
$N{ }^{\text {d }}$	Valve Assembly	Valve Body	P Code	Size																					
SU'	VK-7312-xxx-4-P	VB-7312-0-4-P	-2-4	5/8"	5	100	75	60	50	135	95	5	85	35	250	250	130	220	240	250	30	170	-	-	-
	VK-7332-xxx-4-P	VB-7332-0-4-P	-2-3-4		-						35	-	35	-						35	-	35	35	-	35

a - Close-off ratings for mixing valves: ($S U=$ " A " port, $S D=$ " B " port). The " A " port (SU) ratings equal pressure at Port " A " minus pressure at port " B ". The " B " port
$(S D)$ ratings equal pressure at port " B " minus pressure at port " A ". Close-off ratings in the table are true only when the indicated supply air pressure is applied to the actuator. A change in air pressure at the actuator alters the actual close-off pressure.
b-Close-off pressure ratings describe only the differential pressure which the actuator can close off to standards with adequate seating force. Consult valve body specifications.
c - SU - Stem Up (Flow "B" to "AB"); SD - Stem Down (Flow "A" to "AB"); Normal Position Stem Up (Flow "B" to "AB").
d - NP $=$ Normal Position.

3. VB-7000 Series Globe Valve and Actuator Assemblies

½"...2" 3-Way Mixing \& Diverting/

Sequencing with Pneumatic
 Actuators

3-Way Mixing \& Diverting/Sequencing $1 \not 22^{\prime \prime} \ldots 2^{\prime \prime}$ Globe Valves with Pneumatic Actuators

a - Close-off ratings for mixing or sequencing valves: ($S U=$ " A ", $S D=$ " B " port). " A " port (SU) ratings equal pressure at port " A " minus pressure at port " B ". " B " port (SD) ratings equal pressure at port " B " minus pressure at port " A ". Close-off ratings in the table are true only when the indicated supply air pressure is applied to the actuator. A change in air pressure at the actuator alters the actual close-off pressure.
b-Close-off pressure ratings describe only the differential pressure which the actuator can close-off with adequate seating force. Consult valve body specifications for other limitations.
c - Mixing valves can be used in a diverting application but diverting valves can not be used in mixing applications.
d - SU- Stem Up; SD- Stem Down. Refer to Pg. 25, 2. VB-7000 Series Globe Valves and Sizing and Selection for flow pattern, port designations and normal position.

MORE INFO
Scan the QR code or visit the link below for more information.

Visit:
http://goo.gl/3ftGOA

3-Way Mixing \& Diverting/Sequencing $11 / 2$ " \& 2" Globe Valves with Pneumatic Actuators

Effective Area (stroke)				50 Sq. In. (1⁄2")								
Linkage VB-7313-0-4-P				AV-430								
Linkage VB-7323-0-X-P				AV-430								
Positive Positioner				AK-42309-500								
Factory Assembly with Positive Positioner				No			Yes			Yes		
Actuator Code (XXX)				611			612			613		
Actuator				MK-6601			MK-6611			MK-6621		
Spring Range (psig)				3... 8			5... 10			8... 13		
				Actuator Close-Off Pressure Rating (psi) abc								
Supply Air Pressure (psig)				15/20	15	20	15/20	15	20	15/20	15	20
Stem Position ${ }^{\text {d }}$				SU	SD	SD	SU	SD	SD	SU	SD	SD
Valve Assembly	Valve Body	P Code	Size in.	-								
$\begin{aligned} & \text { VK-7313-XXX-4-P } \\ & \text { VK4-7313-XXX-4-P } \end{aligned}$	$\begin{aligned} & \text { VB-7313-0-4-P } \\ & \text { VB-7314-0-4-P } \end{aligned}$	-10	$11 / 2$	40	170	250	80	110	230	170	30	160
		-11	2	20	90	160	50	60	120	90	15	90
$\begin{aligned} & \text { VK-7323-XXX-4-P } \\ & \text { VK4-7323-XXX-4-P } \end{aligned}$	VB-7323-0-4-P	-10 -11	$11 / 2$ 2	250								

a - Close-off ratings for mixing or sequencing valves: ($S U=$ " A ", $S D=$ " B " port). " A " port ($S U$) ratings equal pressure at port " A " minus pressure at port " B ". " B " port $(S D)$ ratings equal pressure at port " B " minus pressure at port " A ". Close-off ratings in the table are true only when the indicated supply air pressure is applied to the actuator. A change in air pressure at the actuator alters the actual close-off pressure.
b-Close-off pressure ratings describe only the differential pressure which the actuator can close-off to standards with adequate seating force. Consult valve body specifications for other limitations.
c - Mixing valves can be used in a diverting application but diverting valves can not be used in mixing applications.
d- SU- Stem Up; SD- Stem Down. Refer to Pg. 25, 2. VB-7000 Series Globe Valves and Sizing and Selection for flow pattern, port designations and normal position.

Eco 5 truxure Innovation At Every Level

4. VB-7000 Series Globe Valve Actuators and Linkages

Smart starts at the foundation of the BMS

Control devices deliver critical data on system conditions to the BMS and react to needed adjustments to ensure optimal performance.

Our sensors, valves and actuators are the foundation of a comprehensive, integrated BMS. Input/output devices interpret critical data points, sending real-time responses to changes in the physical environment. Measurement of control at the Field Device level is critical for a BMS to perform at optimal efficiency.

4. VB-7000 Series Globe Valve Actuators and Linkages

MG350V

MG350V globe valve actuators are non-spring return electro-mechanical actuators for the control of two-way and three-way globe valves for fan coils, unit ventilators, reheat, cooling units, perimeter heating, and other applications.

Proportional, Floating, and Pulse Width Modulated (PWM) models are available for direct mounting on $1 / 2^{\prime \prime} . . .2^{\prime \prime}$ VB- 7000 globe valves. The MG350V actuators are also compatible with older field installed $1 / 2^{\prime \prime} . .11 / 4^{\prime \prime}$ VB-9000 globe valves as well as other valves (with the addition of AV-800 Globe Valve Adapters).

Benefits

- Tri-color LED status indication for motion indication, auto calibration, and alarm notification.
- Auto calibration provides precise control by scaling the input signal to match the exact travel of the valve stem.
- Proportional models with and without a position output signal with field selectable 2... 10 Vdc and $0 . . .10 \mathrm{Vdc}$ input signals and selectable input signal action (reverse or direct acting).
- Floating and two-position models available with and without a position output signal.
- Pulse width modulated (PWM) models with field-selectable $0.59 \ldots 2.93 \mathrm{sec}$ and $0.1 \ldots 25.5 \mathrm{sec}$ input signal ranges with a position output signal.
- Stall protected throughout stroke.

- Position feedback output signal models include field selectable $2 \ldots 10 \mathrm{Vdc}$ or $0 . .5 \mathrm{Vdc}$ output signal.
- Removable wiring screw terminal with $1 / 2$ " conduit opening
- Integral linkage and self-adjusting valve position indicator
*The CE mark indicates RoHS2 compliance. Please refer to the CE Declaration of Conformity for additional details.

4. VB-7000 Globe Valve Actuators and Linkages

Forta M400A (VB) / M800A (VB) / M1500A (VB)
Forta M400A (VB) / M800A (VB) /M1500A (VB) series Non-Spring Return linear actuators are available in U-Bolt (M×00A) and Screw Mount (M×00A-VB) style for Schneider Electric globe valves with AV-821 linkage kits for mounting to VB-7000 valves. The Screw Mount style screws directly to the bonnet nut on VB-7000 valves (no adapter required). Applications include chilled or hot water and steam.

Benefits

- Field-selectable input signals include reverse and direct-acting, Floating or Proportional plus proportional sequencing input signal ranges.
- Floating configuration - controlled by a SPDT floating controller
- Proportional configuration - 0...10, 2... 10 vdc or $4 . . .20 \mathrm{~mA}$ with the addition of a 500 ohm resistor (included)
- Direct/Reverse action switch selectable
- Linear force: $90 \mathrm{lbf}(400 \mathrm{~N}), 180 \mathrm{lbf}(800 \mathrm{~N}), 337 \mathrm{lbf}(1500 \mathrm{~N})$
- Die-cast housing with plenum-rated plastic cover for NEMA 2 (IP54 vertical mount only) applications
- Manual override to allow positioning of valve
- Electronic valve sequencing and electronic flow curve (equal percentage or Linear) selection.
- Torque overload protection throughout stroke
- Easy "One Touch" input signal/stroke calibration

M400 M800 and M1500
 NSR Forta Actuators

Screw Mount Style

Applicable Literature

- Forta Series Installation Instructions, F-27599
- Forta/VB-7000 Selection Guide, F-27490
- Forta/VB-8xxx/9xxx Selection Guide, F-27491
- AV-800 Series Linkage Adapters for Competitors Valves, F-27470
- AV-821 Linkage VB-7000, F-27701 (U-Bolt Style Only). AV-821 is required for the Mx 00 A but is not for the $\mathrm{Mx00A}-\mathrm{VB}$.
- AV-822 Linkage VB-8xxx, VB-9xxx, F-27702 (U-Bolt Style Only)
- CA-28 Control Valve Sizing, F-13755

Specifications						
U-bolt Style	M400A	M400A-S2	M800A	M800A-S2	M1500A	M1500A-S2
Screw Mount Style	M400A-VB	M400A-S2-VB	M800A-VB	M800A-S2-VB	M1500A-VB	M1500A-S2-VB
AC Power	$24 \mathrm{Vac}+-10 \% 50-60 \mathrm{~Hz}$					
DC Power	$20 . .29 \mathrm{Vdc} 20 \mathrm{~W}$				20... 29 Vdc 30 W	
Running VA		6	15		24	
Transformer Size VA		0	50		50	
Floating Control	Yes					
Proportional Control	$0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}$ or $4 \ldots 20 \mathrm{~mA}$ with 500 ohm resistor					
Feedback	$2 . .10 \mathrm{Vdc}$					
Force	$90 \mathrm{lbf}(400 \mathrm{~N})$		$180 \mathrm{lbf}(800 \mathrm{~N})$		$337 \mathrm{lbf}(1500 \mathrm{~N})$	
2-SPDT Aux Switch	No	24 Vac 4 A res	No	24 Vac 4 A res	No	24 Vac 4 A res

Restrictions on Ambient Temperature for Forta Valve Actuators

Fluid Temperature in Valve Body	Maximum Allowable Ambient Temperature ${ }^{\text {a }}$
Chilled Water	$122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$
$281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$	$113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$
$300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$	$107^{\circ} \mathrm{F}\left(42^{\circ} \mathrm{C}\right)$
$340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)$	$100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$

a - Minimum allowable ambient operating temperature $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$.

Specifications (continued)		
Stroke	M800A, M1500A	U-Bolt style: >3/8"...2" (9-52mm)
	M800A-VB, M1500A-VB	Screw Mount Style >3/8"...17/8" (9-48mm)
	M400A, M400A-VB	U-Bolt and Screw Mount Style >3/8"... $11 / 4$ " ($9-48 \mathrm{~mm}$)
Stroke Timing		Floating: 60 or 300 sec selectable, Proportional: 15 sec @1/2" stroke
Feedback AO		2... 10 Vdc
Power Supply Type		Half Wave
Motor Type		Brushless DC
Enclosure		NEMA 2 (IP 54, vertical mount only) with both conduit connectors used. NEMA 1 IP40 with one connector used.
Sound Power Level		Maximum 32 dba
Ambient Temperature Storage		$-13^{\circ} \mathrm{F} \ldots 149{ }^{\circ} \mathrm{F}\left(-25 \ldots 6{ }^{\circ} \mathrm{C}\right)$ ambient
Ambient Temperature Operational		$122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ For chilled water applications $113{ }^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$ ambient at $281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$ fluid temperature $107^{\circ} \mathrm{F}\left(42^{\circ} \mathrm{C}\right)$ ambient at $300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$ fluid temperature $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ ambient at $340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)$ fluid temperature $90^{\circ} \mathrm{F}\left(32{ }^{\circ} \mathrm{C}\right)$ ambient at $366^{\circ} \mathrm{F}\left(186^{\circ} \mathrm{C}\right)$ fluid temperature
Minimum Operating Temperature		$14 . .150^{\circ} \mathrm{F}\left(-10 \ldots 50^{\circ} \mathrm{C}\right)$
Ambient Humidity		15... 95 \% RH non-condensing
Housing Material		Die-Cast Aluminum
Cover Material		UL94 plenum rated plastic
Agency Listings		UL873, cULus, RCM, CE

Mounting
The actuator may be mounted horizontally, vertically and in any position in between, but not upside down. Please note that to maintain NEMA 2 (IP54) rating the actuator must be mounted vertically.

Restrictions on Ambient Temperature for Forta Valve Actuators

Fluid Temperature in Valve Body	Maximum Allowable Ambient Temperature ${ }^{\text {a }}$
Chilled Water	$122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$
$281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$	$113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$
$300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$	$107^{\circ} \mathrm{F}\left(42^{\circ} \mathrm{C}\right)$
$340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)$	$100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$
$366^{\circ} \mathrm{F}\left(186^{\circ} \mathrm{C}\right)$	$90^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right)$

a - Minimum allowable ambient operating temperature $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$.

4. VB-7000 Globe Valve Actuators and Linkages

MA51-7100 MA51-7101 SmartX Actuators $120 \mathrm{Vac} / 230 \mathrm{Vac}$ 105 lbf (467 N)

MORE INFO
Scan the QR code or visit the link below for more information.

Visit:
http://goo.gl/amkgWe
4. VB-7000 Globe Valve Actuators and Linkages

Mx51-720x 220 lbf Linear
SR SmartX Actuators

	Mx40-704x Series
	SmartX Actuators $\begin{gathered} 24 \mathrm{Vac} \\ 35 \mathrm{lb}-\mathrm{in}(4 \mathrm{~N}-\mathrm{m}) \end{gathered}$
	c) UUS Spring Return Actuator
	Specifications
Connection	$3 \mathrm{ft}$. (0.9 m) cable, $1 / 2^{\prime \prime}$ conduit connectors
Rotation	CW or CCW spring return using reverse mounting
Control Action	Direct/reverse signal selection MS40-only
Shaft Size	$5 / 8^{\prime \prime}(15.9 \mathrm{~mm})$ diameter, $1 / 2^{\prime \prime}(13 \mathrm{~mm})$ square
Housing	NEMA 2 (IEC IP54) with conduit connector in the down position
Dimensions	$6-51 / 64 \times 4 \times 31122^{\prime \prime}(68 \times 100 \times 89 \mathrm{~mm})$
Overload Protection	Throughout rotation
Angle of Rotation	95° nominal (adjustable 40...95 ${ }^{\circ}$)
Position Indicator	Visual indicator
Built-In Auxiliary Switch	1-SPDT 6A on MA40-7043-501, MF40-7043-501, MS40-7043-501
Override	No manual override
Linkages	AV-611
Installation Instructions	MA40-7043: F-26642, MF40-7043: F-26644, MS40-7043: F-26645
Regulatory Compliance	c-UL-us LISTED for safety per UL 873 and CAN C22.2 No.24-93. CE mark compliant per EU directives LVD, EMC, and RoHS2. AUS/NZ marked RCM.

Electrical Specifications								
Part Number	Actuator Inputs			Outputs		Approx. Timing (sec)		Weight lbs (kg)
	Control	Voltage	$\begin{aligned} & \text { VA @ } \\ & 60 \mathrm{~Hz} \end{aligned}$	Feedback	Auxiliary Switch	Powered	Spring Return	
MA40-7043	2-Position	$\begin{gathered} 24 \mathrm{Vac} \pm 20 \% \\ 22-30 \mathrm{Vdc} \end{gathered}$	4.4	None	No	<50	<26	$\begin{gathered} 4.3 \\ (1.9) \end{gathered}$
MA40-7043-501					One			
MF40-7043	Floating		5.9		No	<130	<25	
MF40-7043-501					One			
MS40-7043	Proportional		5.6	$2 . .10 \mathrm{Vdc}$	No			
MS40-7043-501	2... 10 Vdc 4... 20 mAa				One			
MS40-7043-MP ${ }^{\text {a }}$	Proportional $6 . .9 \mathrm{Vdc}$		6.6	None	No			
MS40-7043-MP5 ${ }^{\text {a }}$					One			

a - Provides auxiliary power supply +20 Vdc 25 mA maximum.
Application
The AM-708 500 ohm resistor converts a $4 \ldots 20 \mathrm{~mA}$ signal to a $2 \ldots 10 \mathrm{Vdc}$ signal. Specifications

- Actuators: MS40-7043, MS41-7073, MS41-7153, MS40-717x, MS41-6083, MS41-6153 and MS41-6343.
- Wire leads.

Mx40-704x Spring Return Actuator Specifications

Mx41-7073 Series SmartX Actuators 24 Vac $60 \mathrm{lb}-\mathrm{in}$

©

Spring Return Actuator

Specifications	
Torque	60 lb -in ($7 \mathrm{~N}-\mathrm{m}$) minimum
Connection	3 ft . (0.9 m) cable, $1 / 2^{\prime \prime}$ conduit connectors
Rotation	CW or CCW spring return using reverse mounting
Control Action	Direct/reverse signal selection (MS41- only)
Shaft Size	$3 / 44^{\prime \prime}(19 \mathrm{~mm})$ diameter, $1 / 2{ }^{\prime \prime}(13 \mathrm{~mm})$ square
Housing	NEMA 1, NEMA 2 (IEC IP54) with conduit connector in the down position
Dimensions	$1011 / 2 \times 4 \times 311 / 2^{\prime \prime}(287 \times 100 \times 89 \mathrm{~mm})$
Overload Protection	Throughout rotation
Angle of Rotation	93° nominal
Position Indicator	Pointer and scale
Built-In Auxiliary Switch	2-SPDT 7A on MA41-7073-502, MF41-7073-502, MS41-7073-502 only
Override	Manual
Motor Type	All brushless DC except MA41-7073-brush
Linkages	AV-602
Installation Instructions	MA41-7073: F-26642, MF41-7073: F-26644, MS41-7073: F-26645
Regulatory Compliance	c-UL-us LISTED for safety per UL 873 and CAN C22.2 No.24-93. CE mark compliant per EU directives LVD, EMC, and RoHS2. AUS/NZ marked RCM.

Electrical Specifications								
Part Number	Actuator Inputs			Outputs		Approx. Timing in Seconds		Weight lbs (kg)
	Control	Voltage	VA @ 60 Hz	Feedback	Auxiliary Switch	Powered	Spring Return	
MA41-7073	2-Position	$\begin{gathered} 24 \mathrm{Vac} \pm 20 \% \\ 22-30 \mathrm{Vdc} \end{gathered}$	4.8	None	No	<80	<40	6.8 (3.1)
MA41-7073-502					Two			7.0 (3.2)
MF41-7073	Floating 24 Vac		6.2		No	<195	<30	6.5 (2.9)
MF41-7073-502					Two			7.0 (3.2)
MS41-7073	$\begin{gathered} 2 \ldots 10 \mathrm{Vdc} \\ 4 \ldots 20 \\ \text { mAdca } \end{gathered}$		5.8	2... 10 Vdc	No			6.5 (2.9)
MS41-7073-502					Two			7.0 (3.2)

Application

The AM-708 500 ohm resistor converts a $4 \ldots 20 \mathrm{~mA}$ signal to a $2 . . .10 \mathrm{Vdc}$ signal. Specifications

- Actuators: MS40-7043, MS41-7073, MS41-7153, MS40-717x, MS41-6083, MS41-6153 and MS41-6343.
- Wire leads.

AM-708 500 Ohm Resistor

Mx41-707x \& Mx41-715x Series SmartX Actuators 24... 230 Vac 60/133 lb-in

Spring Return Actuator

Specifications

Spring Return Actuator

Specifications	
Connection	2 ft . (61 cm) Appliance cable, $1 / 2 \mathrm{\prime} \mathrm{\prime}$ conduit connectors
Rotation	CW or CCW spring return using reverse mounting
Shaft Size	Standard: $3 / 8 \ldots 1 / 2^{\prime \prime}(10 \ldots 13 \mathrm{~mm})$ round or square Optional: $1.05^{\prime \prime}(25.1 \mathrm{~mm})$ diameter, $5 / 8^{\prime \prime}(15.9 \mathrm{~mm})$ square
Housing	NEMA 1, NEMA 4 (IEC IP56) with customer-supplied water-tight connector
Dimensions	$10-7 / 8 \times 4 \times 4$ " (276 x $100 \times 100 \mathrm{~mm}$)
Overload Protection	Throughout rotation
Angle of Rotation	93° nominal
Position Indicator	Visual indicator
Built-In Auxiliary Switches	None
Override	None
Motor Type	Brushless DC
Linkages	AV-602
Installation Instructions	MA40-717x: F-26742, MF40-7173: F-26749, MS40-717x: F-26748
Regulatory Compliance	c-UL-us LISTED for safety per UL 873 and CAN C22.2 No.24-93. CE mark compliant per EU directives LVD, EMC, and RoHS2. AUS/NZ marked RCM.

Electrical Specifications								
Part	Actuator Inputs			Outputs		Approx. Timing in Seconds		Weight lbs (kg)
Number	Control	Voltage	VA @ 60 Hz	Feedback	Auxiliary Switch	Powered	Spring Return	
MA40-7170	2-Position	$120 \mathrm{Vac} \pm 10 \%$	11.4	None	No	<162		$\begin{aligned} & 10.5 \\ & (4.8) \end{aligned}$
MA40-7173		$24 \mathrm{Vac} \pm 20 \%$	9.6					
MF40-7173	Floating		10.0					
MS40-7170 ${ }^{\text {a }}$	$2 . . .10 \mathrm{Vdc}$ 4... $20 \mathrm{~mA}^{\mathrm{b}}$	$120 \mathrm{Vac} \pm 10 \%$	11.1					
MS40-7173	2... 10 Vdc	$24 \mathrm{Vac} \pm 20 \%$	9.4					
MS40-7171		$240 \mathrm{Vac} \pm 10 \%$						

a - The CE directive is not applicable to this model.
b - With the addition of a 500 ohm resistor.

Application

The AM-708 500 ohm resistor converts a $4 \ldots 20 \mathrm{~mA}$ signal to a $2 \ldots 10 \mathrm{Vdc}$ signal. Specifications

- Actuators: MS40-7043, MS41-7073, MS41-7153, MS40-717x, MS41-6083, MS41-6153 and MS41-6343.
- Wire leads.

Mx41-6043 Series SmartX Actuators 24 Vac $44 \mathrm{lb}-\mathrm{in}(5 \mathrm{~N}-\mathrm{m})$

Electrical Specifications						
Part Number	Actuator Inputs			Outputs	Approximate Timing in Seconds	Weight lbs (kg)
	Control	Voltage	VA @ 60 Hz	Feedback		
					Powered	
MF41-6043	Floating	$\begin{gathered} 24 \mathrm{Vac} \\ +20 \%-15 \% \end{gathered}$	2.3	None	<90	1.06 (0.5)
MS41-6043	$0 \ldots 10 \mathrm{Vdc}$			$0 . . .10 \mathrm{Vdc}$		

Mx41-6083 Series SmartX Actuators
24 Vac
$88 \mathrm{lb}-\mathrm{in}(10 \mathrm{~N}-\mathrm{m})$

Non-Spring Return Actuator	
	Specifications
Connection	3 ft . (0.9 m) 18 AWG leads, Plenum rated
Rotation	$90^{\circ} \mathrm{CW}$ or CCW field selectable
Shaft Size	3/8..5/8" (10...15.9 mm) diameter, 1/4...1/2" (6.4..13 mm) square, 9/16" (14.3 mm) hex
Housing	NEMA 2, (IP54 to EN60529) with conduit in the down position
Dimensions	$5-7 / 16 \times 23 / 4 \times 3-3 / 8{ }^{\prime \prime}(140 \times 70 \times 60 \mathrm{~mm})$
Overload Protection	Throughout rotation
Angle of Rotation	90° nominal (field-adjustable to limit travel on either end of stroke)
Position Indicator	Adjustable pointer
Built-In Auxiliary Switches	Two SPDT on MF41-6083-502, MS41-6083-522, MS41-6083-502 only
Operating Temperature Limits	$-25 \ldots 130^{\circ} \mathrm{F}\left(-32 \ldots 55^{\circ} \mathrm{C}\right)$
Override	Manual
Linkages	AV-611
Installation Instructions	MF41-6083: F-27213, MS41-6083: F-27214
Regulatory Compliance	c-UL-us LISTED per UL 873 and CAN C22.2 No.24-93. CE compliant to directives LVD, EMC, and RoHS2.

			ctrical Spec	fications			
Part Number	Actuator Inputs			Outputs		Approximate Timing in Seconds Powered	Weight lbs (kg)
	Control	Voltage	VA @ 60 Hz	Feedback	Auxiliary Switch		
MF41-6083	Floating	$\begin{gathered} 24 \mathrm{Vac} \\ +20 \%-15 \% \end{gathered}$	2.3	None	No	<125	1.06 (0.5)
MF41-6083-502				None	Two		
MS41-6083	$0 . . .10 \mathrm{Vdc}$		3.3	$0 \ldots 10 \mathrm{Vdc}$	No		
MS41-6083-502	$0 . . .10 \mathrm{Vdc}$				Two		

Mx41-6153 Series SmartX Actuators 24 Vac 133 lb-in (15 N-m)	
	Non-Spring Return Actuator
	Specifications
Connection	$3 \mathrm{ft}.(0.9 \mathrm{~m}) 18$ AWG leads
Rotation	CW or CCW through reverse mounting
Shaft Size	
Housing	NEMA 1, (IP54 to EN60529)
Dimensions	$8-3 / 8 \times 31 / 4 \times 2-2 / 33^{\prime \prime}(210 \times 80 \times 70 \mathrm{~mm})$
Overload Protection	Throughout rotation
Angle of Rotation	90° nominal (field-adjustable to limit travel on either end of stroke)
Position Indicator	Adjustable pointer
Built-In Auxiliary Switches	Two SPDT on MS41-6153-502 only
Operating Temperature Limits	$-25 \ldots .130^{\circ} \mathrm{F}\left(-32 \ldots . .55^{\circ} \mathrm{C}\right)$
Override	Manual
Linkages	AV-611
Installation Instructions	F-27215
Regulatory Compliance	c-UL-us LISTED per UL 873 and CAN C22.2 No.24-93. CE compliant to directives LVD, EMC, and RoHS2.

Electrical Specifications

Part Number	Actuator Inputs			Outputs		Approximate Timing in Seconds Powered	Weight lbs (kg)
	Control	Voltage	VA @ 60 Hz	Feedback	Auxiliary Switch		
MF41-6153	Floating	$\begin{gathered} 24 \mathrm{Vac} \\ +20 \%-15 \% \end{gathered}$	3.0	None	No	<125 (60 Hz)	2.2 (1)
MS41-6153	$0 . .10 \mathrm{Vdc}$			0... 10 Vdc			
MS41-6153-502					2		

Application
The AV-602 links Schneider Electric rotary actuators to 1 "...2" VB-7000 globe valves.

AV-602 Actuator/Valve Combinations		
Actuator	Factory - Assemble Valve Sizes 2-Way \& 3-Way	Field-Assembled to VB Valve Bodies 2-Way \& 3-Way
$M \times 41-707 x$ $M \times 41-715 x$ $M \times 40-717 x$	$11 / 2 \ldots 2^{\prime \prime}$	$1 \ldots 2^{\prime \prime}$

Specifications

Motor mounting: In any upright position with the motor above center the line of the valve body.

Actuator/Valve Combinations		
Actuator	Globe Valve	SR
$M \times 41-707 x$	$1 \ldots 2^{\prime \prime}$	SR (Spring Return)
$M \times 41-715 x$	$11 / 4^{\prime \prime} \ldots 2^{\prime \prime}$	

Typical Actuator/Linkage Mounting

4. VB-7000 Globe Valve Actuators and Linkages

Application

The AV-611 linkage connects SmartX Actuator Mx4x-60x3 or 6153 non-spring return and Mx40-704x spring return actuators (listed below) to $1 / 2^{\prime \prime} . .2^{\prime \prime}$ VB-7000 and $1 / 2^{\prime \prime}$... $11 / 4$ " discontinued VB-9xxx 2-Way and 3 -Way globe valves.

Actuators		
Actuator	Descriptions	Size
MF41-6043	Floating 44 lb -in non-spring return	
MS41-6043	Proportional 44 lb -in non-spring return	
MF41-6083	Floating $88 \mathrm{lb}-\mathrm{in}$ non-spring return	
MS41-6083	Proportional 88 lb -in non-spring return	
MF41-6153	Floating 133 lb -in non-spring return	
MS41-6153	Proportional 133 lb -in non-spring return	
MA40-704x	Two-position $35 \mathrm{lb}-\mathrm{in}$ spring return	
MF40-7043	Floating $35 \mathrm{lb}-$ in spring return	1⁄2"...2"
MS40-7043	Proportional 35 lb -in spring return	

Note: The AV-611 linkage is also compatible with the actuators above with the auxiliary switch option (-5xx in the third part number field).

Typical Actuator Mounting

Linkage Kits for Field Mounting Globe Valve Actuators

Linkage Kit ${ }^{\text {a }}$	Actuator	Factory-Assembled Valve Sizes 2-Way \& 3-Way	Field-Assembled to VB Valve Bodies 2-Way \& 3-Way
AV-611	M $\times 41$-6043	1/2"...2"	½"...2"
	M $\times 41$-6083	1"...2"	
	M $\times 41$-6153	11⁄2"...2"	

a - Refer to linkage pages for complete details.

4. VB-7000 Globe Valve Actuators and Linkages

MA-52xx Hydraulic 2-Position SR Actuators

Application

These MA-52xx Series actuators are used for two-position control of valves which require a return to the normal position upon power interruption.

Features

- Two-position actuators controlled by an SPST controller
- Spring return
- 24 Vac and 120 Vac models are available
- An actuator with the part number suffix "- 500 " has a built-in, adjustable, SPDT auxiliary switch
- Die cast lower housing with $1 / 2^{\prime \prime}$ conduit opening and painted steel upper housing
- Hydraulic actuator with oil-immersed motor and pump

MA-52xx Spring Return Series

Model Table								
Part Number	Actuator Power Input					10 Amps Aux Switch	Timing in Seconds @ $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$	
	AC Voltage +10-15\%	60 Hz		50 Hz			To Extend	
		Watts	Amps	Watts	Amps		(No Load Stroke)	Power Loss
MA-5210	120	5.4	0.14	6.0	0.17	No	60	15
MA-5210-500						Yes		
MA-5213	24	8.8	0.65	9.8	0.80	No		
MA-5213-500						Yes		

Specifications

Inputs	
Control Circuit	Two-wire, SPDT
Power Input	Refer to Model Table
Connections	Color-coded 4 ft . (1.2 m) leads.
Outputs	
Electrical	Auxiliary Switch (MA-5xxx-500 models), 10 Amps, 120 Vac adjustable SPDT, factory set to close the N.C. contact at the retracted end of stroke.
Mechanical	Stroke, Valve: Approximately 9/16" (14.3 mm) from fully retracted to fully extended
Environment	
Temperature Limits	Shipping \& Storage, $-40 \ldots 140^{\circ} \mathrm{F}\left(-40 \ldots 61^{\circ} \mathrm{C}\right)$ Operating, $-20 \ldots 140^{\circ} \mathrm{F}\left(-29 \ldots 60^{\circ} \mathrm{C}\right)$ Operating, Damper -20... $140^{\circ} \mathrm{F}\left(-29 \ldots 60^{\circ} \mathrm{C}\right)$ Operating, Valve: Refer to Restrictions on Maximum Allowable Ambient Air Temperature for Valve Actuators table (next page).
Humidity	$5 . .95 \%$ RH, non-condensing
Location	NEMA Type 1
Dimensions	$63 / 4 \times 3-23 / 32 \times 31 / 4$ Dia." ($171 \times 94 \times 83 \mathrm{~mm}$)
Regulatory Compliance	RoHS and REACh

Restrictions on Maximum Allowable Ambient Air Temperature for Valve Actuators		
Temperature of Media	Maximum Ambient Temperature of MA-521x Series	
Valve) ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	AV-7600-1 (Only) ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { AV-7600-1 and AV-601 } \\ & { }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$
366 (180)	90 (32)	90 (32)
340 (171)	100 (38)	100 (38)
281 (138)	115 (46)	140 (60) ${ }^{\text {a }}$
181 (83)	140 (60) ${ }^{\text {a }}$	140 (60) ${ }^{\text {a }}$
80 (26)	140 (60) ${ }^{\text {a }}$	140 (60) ${ }^{\text {a }}$

a - Maximum ambient temperature of the actuator must never exceed $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$.

Optional Accessories	
Linkages	
AV-601	Linkage extension for hot water and steam applications; use with AV-7600.
AV-7600-1	Linkage $1 / 2^{\prime \prime} \ldots 2^{\prime \prime}$ to be used with VB-7000.

Typical Wiring for MA-5xxx Series Actuators

Application

The AV-7600-1 Linkage kit is used to field assemble MA-521x,
MP-521x, MP-541x and MP-561x round hydraulic actuators to $1 / 2$ "
through 2" VB-7000 series valve bodies.

Features

- Provides direct-couple interface between MA, MP and MPR-5xxx actuators and valve bodies.
- Kit fits all VB-7000 series valve bodies.
- Includes spring choices for higher 2-Way valve close off. Specifications
- Actuator mounting: In any upright position above the center line of the valve body. For steam applications only, mount the actuator above the valve body at 45° from vertical.

Application

These MP-52xx Series actuators provide electronic proportional control of valves requiring the return to normal position upon power interruption.

Features

- Compatibility with 2... 15 Vdc System 8000 input signals.
- Proportional control by variable Vdc input signal.
- Spring return
- Fixed 3 Vdc operating span.
- Non-adjustable start point and non-positive positioning. Typically, one actuator is controlled from one Vdc output signal.
- $10,000 \Omega$ or greater input impedance.

MP-52xx Proportional

- Die cast lower housing with $1 / 2$ " $(12.7 \mathrm{~mm})$ conduit opening and painted steel upper housing.
- Hydraulic actuator with oil-immersed motor, transducer, and pump.

					lodel	able				
Part Number	Actuator Power Input					10 Amps Auxiliary Switch ${ }^{\text {a }}$	Timing in Seconds @ $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$			Required Linkage
	ACVoltage $\pm 10 \%$	60 Hz		50 Hz			To Extend (No Load Stroke)	To Retract	Retract on Power Loss	
		Watts	Amps	Watts	Amps					
MP-5210	120	11.7	0.16	12.9	0.19	No	60	40	15	$\begin{gathered} \text { AV-7600-1 } \\ \text { AV-601b } \end{gathered}$
MP-5210-500						Yes				
MP-5213	24	12.0	0.80	13.2	0.97	No				
MP-5213-500						Yes				

a - Common of switch is in series with AC power supply to the motor. Therefore, the switch must be wired to control the same voltage as the actuator itself.
b - May be required for steam or hot water.

Specifications	
Inputs	
Compatible with	$2 . .15 \mathrm{Vdc}$ from System 8000 controllers Operating Span: Approx. 3 Vdc fixed. See F-26235-2 for valves. Impedance: $10,000 \Omega$ or greater.
Power Input	Refer to Model Table.
Connections	Color-coded 4 ft . (1.2 m) leads.
Outputs	
Electrical	Auxiliary Switch (Mx-52xx-500 models), 10 Amps, 120/240 Vac adjustable SPDT, factory set to close the N.C. contact at the retracted end of stroke.
Mechanical	Stroke, Valve: Approximately $9 / 16^{\prime \prime}$ (14.3 mm) over a nominal 6 Vdc (fully retracted) to 9 Vdc (fully extended).
Environment	
Temperature Limits	Shipping \& Storage, $-40 \ldots 140^{\circ} \mathrm{F}\left(-40 \ldots 61^{\circ} \mathrm{C}\right)$ For valve actuators: Refer to Pg. 25, 2. VB-7000 Series Globe Valves and Sizing and Selection
Humidity	$5 . .95 \% \mathrm{RH}$, non-condensing
Location	NEMA Type 1
Dimensions	$63 / 4 \times 31 / 4$ Dia." (171 x 83 mm)
Regulatory Compliance	RoHS and REACh

Restrictions on the Maximum Ambient Temperature for Valve Actuator

Maximum Temperature of Media in the Valve Body (Check Valve Ratings)	Maximum Ambient Temperature of MP-541x or MPR$5 \times 1 x$		Maximum Ambient Temperature of MA-521x or MP-521x	
	AV-600a or AV-7600 ${ }^{\text {b }}$ Only for Chilled Water Applications Only	$\begin{gathered} A V-600^{a} \\ \text { or AV-7600 \& AV-601 } \end{gathered}$	AV-600 ${ }^{\text {a }}$ or AV-7600 ${ }^{\text {b }}$ Only	$\begin{gathered} A V-600^{a} \\ \text { or AV-7600 \& AV-601 } \end{gathered}$
$366^{\circ} \mathrm{F}\left(180^{\circ} \mathrm{C}\right)$	Do Not Use	$88^{\circ} \mathrm{F}\left(31^{\circ} \mathrm{C}\right)$	$90^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right)$	$90^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right)$
$340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)$		$93^{\circ} \mathrm{F}\left(34^{\circ} \mathrm{C}\right)$	$100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$	$100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$
$281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$		$103^{\circ} \mathrm{F}\left(39^{\circ} \mathrm{C}\right)$	$115^{\circ} \mathrm{F}\left(46^{\circ} \mathrm{C}\right)$	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)^{\mathrm{C}}$
$181{ }^{\circ} \mathrm{F}\left(83^{\circ} \mathrm{C}\right)$		$120^{\circ} \mathrm{F}\left(48^{\circ} \mathrm{C}\right)$	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)^{\mathrm{C}}$	
$80^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)^{\mathrm{C}}$	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)^{\text {c }}$		

a - For detailed Linkage installation instructions, refer to AV-600 Hydraulic Actuator Linkage Kit Installation Instructions, F-26279.
b - For detailed Linkage installation instructions, refer to AV-7600 Hydraulic Actuator Linkage Kit Installation Instructions, F-26235.
c - Maximum allowable ambient temperature of the actuator.
Optional Accessories

Linkages	
AV-601	Linkage extension for hot water and steam applications; use with AV-7600.
AV-7600-1	Linkage for VB-7000.

Application
The AV-7600-1 Linkage kit is used to field assemble MA-521x,
MP-521x, MP-541x and MP-561x round hydraulic actuators to $1 / 2$ "
through 2" VB-7000 series valve bodies.
Features

- Provides direct-couple interface between MA, MP and MPR-5xxx actuators and valve bodies.
- Kit fits all VB-7000 series valve bodies.
- Includes spring choices for higher 2-Way valve close off. Specifications
- Actuator mounting: In any upright position above the center line of the valve body. For steam applications only, mount the actuator above the valve body at 45° from vertical.

AV-7600-1
Hydraulic Actuator Linkage Kit

Application

These MP-54xx Series actuators provide electronic proportional control of valves requiring the return to normal position upon power interruption.

Features

- Proportional control by variable Vdc input signal.
- Compatibility with $2 \ldots 15 \mathrm{Vdc}$ System 8000 input signals.
- Spring return.
- Fixed 3 Vdc operating span.
- Adjustable 2... 12 Vdc start point for paralleling or sequencing of actuators.
- $10,000 \Omega$ or greater input impedance.
- 24 and 120 Vac models.

MP-541x Series Positive Positioning

- Damper models with linkage or base models that require separate damper or Linkage.
- Die cast lower housing with $1 / 2$ " conduit opening and painted steel upper housing.
- Hydraulic actuator with oil immersed motor, transducer, and pump.

Model Table										
Part Number	Actuator Power Input					Positive Positioner ${ }^{\text {a }}$	Timing in Seconds @ $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$			Linkage
	$\begin{gathered} \text { AC } \\ \text { Voltage } \\ +10 \% \\ -15 \% \end{gathered}$	60 Hz		50 Hz			No Load Stroke		Retract on Power Loss	
		Watts	Amps	Watts	Amps		$\begin{gathered} \text { To } \\ \text { Extend } \end{gathered}$	$\begin{gathered} \text { To } \\ \text { Retract } \end{gathered}$		
MP-5410	120	11.7	0.16	12.9	0.19					AV-600
MP-5413	24	12.0	0.80	13.2	0.97					AV-7600-1

a - Internal feedback circuitry provides positive positioning of valve stem in relation to control signal.
b - May be required for steam or hot water.

Specifications	
Inputs	Compatible with 2... 15 Vdc from System 8000 controllers
Operating Span	Approx. 3 Vdc fixed.
Start Point	Adjustable 2...12 Vdc. Factory set at 6 Vdc . Impedance: $10,000 \Omega$ or greater
Connections	Color-coded 4 ft . (1.2 m) leads.
Outputs	
Electrical	Internal Power Supply: $20 \mathrm{Vdc}, 25 \mathrm{~mA}$.
Mechanical	Stroke, Valve: Approximately $9 / 16$ " (14.3 mm) over a nominal 6 Vdc (fully retracted) to 9 Vdc (fully extended) input range.
Environment	
Ambient Temperature Limits	Operating: $-20 \ldots 140^{\circ} \mathrm{F}\left(-29 \ldots 60^{\circ} \mathrm{C}\right)$ For valve actuators: Refer to Pg. 25, 2. VB-7000 Series Globe Valves and Sizing and Selection
Humidity	$5 . .95 \% \mathrm{RH}$, non-condensing
Location	NEMA Type 1
Dimensions	$63 / 4 \times 31 / 4$ Dia." (171 x 83 mm)
Regulatory Compliance	RoHS and REACh

Restrictions on the Maximum Ambient Temperature for Valve Actuator

Maximum Temperature of Media in the Valve Body (Check Valve Ratings)	Maximum Ambient Temperature of MP-541x or MPR-5x1x		Maximum Ambient Temperature of MA-521x or MP-521x	
	AV-600 ${ }^{\text {a }}$ or $\mathrm{AV}-7600^{\mathrm{b}}$ Only for Chilled Water Applications Only	$\begin{gathered} A V-600^{a} \\ \text { or AV-7600 \& AV-601 } \end{gathered}$	AV-600 ${ }^{\text {a }}$ or $\mathrm{AV}-7600^{\text {b }}$ Only	$\begin{gathered} \text { AV-600 } \\ \text { or AV-7600 \& AV-601 } \end{gathered}$
$366^{\circ} \mathrm{F}\left(180^{\circ} \mathrm{C}\right)$	Do Not Use	$88^{\circ} \mathrm{F}\left(31^{\circ} \mathrm{C}\right)$	$90^{\circ} \mathrm{F}$	
$340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)$		$93^{\circ} \mathrm{F}\left(34^{\circ} \mathrm{C}\right)$	$100^{\circ} \mathrm{F}$	C)
$281{ }^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$		$103^{\circ} \mathrm{F}\left(39^{\circ} \mathrm{C}\right)$	$115^{\circ} \mathrm{F}\left(46^{\circ} \mathrm{C}\right)$	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)^{\mathrm{C}}$
$181{ }^{\circ} \mathrm{F}\left(83^{\circ} \mathrm{C}\right)$		$120^{\circ} \mathrm{F}\left(48^{\circ} \mathrm{C}\right)$	$140^{\circ} \mathrm{F}$	$\left.0^{\circ} \mathrm{C}\right)^{\text {c }}$
$80^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)^{\mathrm{C}}$			

a - For detailed Linkage installation instructions, refer to AV-600 Hydraulic Actuator Linkage Kit Installation Instructions, F-26279.
b - For detailed Linkage installation instructions, refer to AV-7600 Hydraulic Actuator Linkage Kit Installation Instructions, F-26235
c - Maximum allowable ambient temperature of the actuator.

Optional Accessories	
Linkages	
AV-601	Linkage extension for hot water and steam applications; use with AV-7600.
AV-7600-1	Linkage for VB-7000.

Application

AV-7600-1
The AV-7600-1 Linkage kit is used to field assemble MA-521x,
MP-521x, MP-541x and MP-561x round hydraulic actuators to $1 / 2{ }^{\prime \prime}$
Hydraulic Actuator
through 2" VB-7000 series valve bodies.

Features

- Provides direct-couple interface between MA, MP and MPR-5xxx actuators and valve bodies.
- Kit fits all VB-7000 series valve bodies.
- Includes spring choices for higher 2-Way valve close off.

Specifications

- Actuator mounting: In any upright position above the center line of the valve body. For steam applications only, mount the actuator above the valve body at 45° from vertical.

Application

These MPR-561x Series actuators provide electronic proportional control of valves requiring return to normal position upon power interruption. They are compatible with controllers generating 4... 20 mA input signals.

Features

- Spring return.
- 24 and 120 Vac models available.
- Die cast lower housing with $1 / 2$ " conduit opening and painted steel upper housing.
- Hydraulic actuator with oil-immersed motor, transducer, and pump.
- Proportional actuators controlled by a variable mAdc input signal.
- 82.5Ω input impedance.
- Adjustable actuator startpoint.

MPR-561x Series Proportional

					odel T				
Part Number	Actuator Power Input					Input Signal	Timing in Seconds @ $72^{\circ} \mathrm{F}\left(22^{\circ} \mathrm{C}\right)$ No load stroke		Linkage
	$\begin{gathered} \text { AC } \\ \text { Voltage } \\ \pm 10 \% \end{gathered}$	60 Hz		50 Hz					
		Watts	Amps	Watts	Amps		Extend	Retract	
MPR-5610	120	11.7	0.16	12.9	0.19	4... 20 mA	60	30	$\begin{aligned} & \text { AV-600 } \\ & \text { AV-601a } \end{aligned}$
MPR-5613	24	12.0	0.80	13.2	0.97				

a - May be required for steam or hot water.

Specifications	
Inputs	
Control Circuit	MPR-561x Series: Two-wire.
Input Impedance	82.5Ω for $4 . . .20 \mathrm{~mA}$ input.
Power Input	Refer to Model Table
Connections	Color-coded 4 ft . (1.2 m) leads.
Outputs	
Electrical	Position signals: Internal feedback circuitry provides positive positioning of the valve in relation to the controller signal. Startpoint adjustment: Adjustable potentiometer provides manual adjustment of the actuator startpoint.
Mechanical	Stroke, Valve: Approximately $9 / 16^{\prime \prime}(14.3 \mathrm{~mm})$ from fully retracted to fully extended. Proportional output torque rating of $15 \mathrm{lb}-\mathrm{in}(1.7 \mathrm{~N}-\mathrm{m})$, available throughout the entire stroke, based on the lowest force available under normal operation, the spring return stroke, or at a minimum (-10\%) supply voltage.
Environment	
Temperature Limits	Shipping \& Storage: $-40 \ldots 140^{\circ} \mathrm{F}\left(-40 \ldots 60^{\circ} \mathrm{C}\right)$ Operating: $-20 \ldots 140^{\circ} \mathrm{F}\left(-29 \ldots 60^{\circ} \mathrm{C}\right)$ Operating, Valve: Refer to Pg. 25, 2. VB-7000 Series Globe Valves and Sizing and Selection
Humidity	$5 . .95 \% \mathrm{RH}$, non-condensing
Location	NEMA Type 1
Dimensions	MP-5x1x: $63 / 4 \times 31 / 4{ }^{1 / 2}(171 \times 83 \mathrm{~mm})$
Regulatory Compliance	RoHS and REACh

Optional Accessories	
Linkages	
AV-601	Linkage extension for hot water and steam applications; use with AV-7600.
AV-7600-1	Linkage for VB-7000.

Wiring Diagram 4... 20 mAdc Controllers

Application

The AM-708 500 ohm resistor converts a $4 \ldots 20 \mathrm{~mA}$ signal to a $2 \ldots 10 \mathrm{Vdc}$ signal.
AM-708
500 Ohm

- Wire leads.

Application

The AV-7600-1 Linkage kit is used to field assemble MA-521x, MP-521x, MP-541x and MP-561x round hydraulic actuators to $1 / 2$ "

AV-7600-1
through 2" VB-7000 series valve bodies.

Features

- Provides direct-couple interface between MA, MP and MPR-5xxx actuators and valve bodies
- Kit fits all VB-7000 series valve bodies.
- Includes spring choices for higher 2-Way valve close off.

Specifications

- Actuator mounting: In any upright position above the center line of the valve body. For steam applications only, mount the actuator above the valve body at 45° from vertical.

4. VB-7000 Globe Valve Actuators and Linkages

AV-601 Extension for MA, MP 5x1x-xxx, MPR-5x1x, MP-541x

Application

The AV-601 linkage extension kit is used to increase the allowable ambient temperature range of MA, MP-5x1x-xxx, MPR-5x1x and MP-541x Series actuators. The MP-541x and MPR-5x1x Series of actuators require the AV-601 extension. This kit provides thermal insulation between the valve and the actuator. It does not insulate the actuator from radiant or convective heat transfer.

Specifications

Kit consists of an extension coupling and a spacer.
Dimensions: Add 2-1/32" (52 mm) to the "E" dimension for the valve assembly using an AV-601 linkage extension. Refer to complete dimensions in the separately available Wiring, Dimensions and Reference document F-28125 from the Exchange Download Center.

AV-601 Linkage Extension for Electric/Electronic Hydraulic Valve Actuators

- 2-Way Valves, Union End
- 2-Way Valves, Threaded
- 3-Way Mixing and Sequencing Valves, Flared
- 3-Way Mixing and Diverting Valves, Threaded

Restrictions on the Maximum Ambient Temperature for Valve Actuator

Maximum Temperature of Media in the Valve Body (Check Valve Ratings)	Maximum Ambient Temperature of MP-541x or MPR-5x1x		Maximum Ambient Temperature of MA-521x or MP-521x	
	AV-600 ${ }^{\text {a }}$ or AV-7600 ${ }^{\text {b }}$ Only for Chilled Water Applications Only	$\begin{gathered} A V-600^{a} \\ \text { or } \mathrm{AV}-7600^{\mathrm{b}} \text { \& AV-601 } \end{gathered}$	AV-600 ${ }^{\text {a }}$ or $\mathrm{AV}-7600^{\text {b }}$ Only	$\begin{gathered} \text { AV-600a } \\ \text { or AV-7600 \& AV-601 } \end{gathered}$
$366^{\circ} \mathrm{F}\left(180^{\circ} \mathrm{C}\right)$	Do Not Use	$88^{\circ} \mathrm{F}\left(31^{\circ} \mathrm{C}\right)$	$90^{\circ} \mathrm{F}$	
$340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)$		$93^{\circ} \mathrm{F}\left(34^{\circ} \mathrm{C}\right)$	$100^{\circ} \mathrm{F}$	$\left.8^{\circ} \mathrm{C}\right)$
$281{ }^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$		$103^{\circ} \mathrm{F}\left(39^{\circ} \mathrm{C}\right)$	$115^{\circ} \mathrm{F}\left(46^{\circ} \mathrm{C}\right)$	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)^{\mathrm{C}}$
$181^{\circ} \mathrm{F}\left(83^{\circ} \mathrm{C}\right)$		$120^{\circ} \mathrm{F}\left(48^{\circ} \mathrm{C}\right)$	$140^{\circ} \mathrm{F}$	$\left.{ }^{\circ} \mathrm{C}\right)^{\text {c }}$
$80^{\circ} \mathrm{F}\left(26^{\circ} \mathrm{C}\right)$	$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)^{\mathrm{c}}$			

a - For detailed Linkage installation instructions, refer to AV-600 Hydraulic Actuator Linkage Kit Installation Instructions, F-26279.
b - For detailed Linkage installation instructions, refer to AV-7600 Hydraulic Actuator Linkage Kit Installation Instructions, F-26235.
c - Maximum allowable ambient temperature of the actuator.

4. VB-7000 Globe Valve Actuators and Linkages

MK-2690 Pneumatic Valve Actuator - Proportional

Application

MK-2690 Proportional
Pneumatic Valve Actuator

The MK-2690 provides proportional pneumatic control of ½"...2" VB-7000 Series valves (subject to close-off ratings) and discontinued $1 / 2^{\prime \prime} . .1^{1} 1 / 4^{\prime \prime}$ VB- $9 \times x x$ valves.

Features

- Compact size with $6 \mathrm{in}^{2}\left(39 \mathrm{~cm}^{2}\right)$ effective area
- Rugged die cast aluminum housing
- Replaceable beaded, molded, neoprene diaphragm

Model Table		
Model Number	Nominal Spring Range ${ }^{\text {a }}$ (Spring Color Code)	
	psig	kPa
MK-2690	$3 \ldots 7$ (Yellow)	$21 \ldots 48$
	$5 \ldots 10$ (Black)	$34 \ldots . \ldots 9$
	$8 \ldots 13$ (Blue)	$55 \ldots 90$

a - Nominal (no load) condition, spring ranges based on $1 / 2^{\prime \prime}(13 \mathrm{~mm})$ maximum stroke, provided by AV-7400 linkage (order separately).

Specifications	
Inputs	Compatible with proportional pneumatic signal. Refer to Model Table.
Start Point	Non-adjustable.
Air Connections	1/8" FNPT located on side of housing.
Max. Air Pressure	$30 \mathrm{psig}(207 \mathrm{kPa})$
Mechanical Outputs	
Stroke	5/8" available
Environment	
Ambient Temperature Limits	Shipping: $-40 \ldots 220^{\circ} \mathrm{F}\left(-40 \ldots 104^{\circ} \mathrm{C}\right)$ Operating: -20... $220^{\circ} \mathrm{F}\left(-29 \ldots 104^{\circ} \mathrm{C}\right)$
Humidity	$5 . .95 \% \mathrm{RH}$, non-condensing
Spring	(see Optional Accessories below)
Dimensions	$3-9 / 16^{\prime \prime} \mathrm{H} \times 5^{\prime \prime} \mathrm{W} \times 21 / 4 \mathrm{C}$ D (90×127 $\times 57 \mathrm{~mm}$)

Optional Accessories	
Spring	Stainless steel spring retracts actuator shaft and raises valve stem on loss of air pressure.
Springs provided in AV-400 or AV-7400 linkage.	

4. VB-7000 Globe Valve Actuators and Linkages

Application

The AV-7400 Linkage kit is used to field install MK-2690 pneumatic actuators to a variety of $1 / 2^{\prime \prime} \ldots 2^{\prime \prime}$ VB-7000 series valve bodies.

Features

- Springs are provided for control-signal applications, including 3...7, 5... 10 and 8... 12 psig.
- Kit fits all VB-7000 series valve bodies.
- Blue spring used with AV-7600-1 supports hydraulic $4 \ldots 20 \mathrm{~mA}$ and $0 . . .10 \mathrm{Vdc}$ applications.

Specifications

- Actuator mounting: In any upright position with actuator above the center line of the valve body.

Spring Specifications

Spring Specifications	
Spring Range psig (kPa)	Spring Color
$3 \ldots 7(21 \ldots 48)$	Yellow
$5 \ldots 10(34 \ldots 68)$	Black
$8 \ldots .13(55 \ldots 89)$	Blue

MK-46xx
Proportional Pneumatic Valve Actuator

Application

The MK-46xx Series and MK-4621-422 proportional pneumatic actuators, with 11 sq. in. $\left(71 \mathrm{~cm}^{2}\right)$ effective diaphragm area, are used to control $1 / 22^{\prime \prime} . .2$ " VB-7000 series valves.

Features

- Rugged die cast aluminum construction.
- Rolling diaphragm.
- Multiple spring ranges for various applications.
- Adjustable start point (refer to Specifications).
- ½" nominal stroke.
- Can also be used on $1 / 2$ " stroke discontinued VB-9xxx series valves ($1 / 22^{\prime \prime} . .11 / 4$ ").

Model Table		
Model Number	Nominal Spring Range ${ }^{\text {a }}$	
	psig	kPa
MK-4601	$3 \ldots 6$	$21 \ldots 41$
MK-4611	$5 \ldots 10$	$34 \ldots 69$
MK-4621	$10 \ldots 13$	$69 \ldots 90$
MK-4621-422	$10 \ldots 11.25$	$69 \ldots 77$
MK-4641	$3 \ldots 13$	$21 \ldots 90$

a - Nominal (no load) condition, spring ranges based on $1 / 2^{\prime \prime}(13 \mathrm{~mm})$ maximum stroke.

Specifications

Construction	Compatible with proportional pneumatic signal. Refer to Model Table.
Housing	Die cast aluminum.
Diaphragm	Replaceable, beaded, molded, neoprene (Part number PNV-002).
Stroke	1/2" (12.7 mm) nominal.
Spring	Retracts actuator shaft and raises valve stem on loss of air pressure.
Nominal Spring Range	Refer to Model Table.
Starting Point	Field adjustable.
MK-4601, MK-4621	+1/2 psig (7... 14 kPa).
MK-4611, MK-4641	$\pm 2 \mathrm{psig}(14 \mathrm{kPa})$.
Air Connections	1/8" FNPT.
Max. Air Pressure	$30 \mathrm{psig}(207 \mathrm{kPa})$.
Environment	
Ambient Temperature Limits	Shipping: $-40 \ldots . .220^{\circ} \mathrm{F}\left(-40 \ldots 104^{\circ} \mathrm{C}\right)$ Operating: -20... $220^{\circ} \mathrm{F}\left(-29 \ldots 104^{\circ} \mathrm{C}\right)$
Mounting	In any upright position with actuator head above the center line of the valve body.
Dimensions	$3-7 / 8 \times 43 / 4 \times 43 / 4 "(99 \times 121 \times 121 \mathrm{~mm})$
Maintenance Parts	See F-26033

Optional Accessories

Linkage	AV-401. See F-19072
Positive positioner \& linkag	e; AK-42309-500 use with MK-46x1-0-2.
TOOLS (factory available)	TOOL-095-1

4. VB-7000 Globe Valve Actuators and Linkages

Application

MK-66xx proportional pneumatic actuators, with 50 sq . in. ($323 \mathrm{~cm}^{2}$) effective diaphragm area, are used to control $1 \frac{1}{2}$ "...2" VB- 7000 series valves.

Features

- Rugged die cast aluminum construction.
- Rolling diaphragm.
- Three spring ranges for various applications.
- Start point adjustable ± 2 psi.

Proportional Pneumatic Valve Actuator

Model No. Model Table	Nominal Stroke in. (mm)		
	$3 \ldots 8$	kPa	$1 / 2(13.7)$ $\quad 5 \ldots 10$

Specifications	
Construction	
Housing	Die cast aluminum
Diaphragm	Replaceable beaded molded neoprene (Part number PNV-202).
Stroke	Refer to Model Table.
Spring	Retracts actuator shaft and raises valve stem on loss of air pressure.
Nominal spring range	Refer to Model Table.
Starting point	Adjustable ± 2 psig ($\pm 14 \mathrm{kPa}$)
Maximum air pressure	30 psig (207 kPa)
Ambient temperature limits	
Shipping	$-40 \ldots 220^{\circ} \mathrm{F}\left(-40 \ldots 104^{\circ} \mathrm{C}\right)$
Operating	$-20 \ldots 220^{\circ} \mathrm{F}\left(-29 \ldots 104^{\circ} \mathrm{C}\right)$
Air connections	1/8" FNPT
Mounting	Any upright position with actuator head above center line of the valve body.
Dimensions	$73 / 4{ }^{\prime \prime} \mathrm{H} \times 10 \frac{1}{2}$ " W $\times 101 / 2^{\prime \prime} \mathrm{D}(199 \times 267 \times 267 \mathrm{~mm})$
Maintenance Parts	See F-26033
Optional Accessories	
Linkage	AV-430 (See F-19072).

4. VB-7000 Globe Valve Actuators and Linkages

AK-42309-500
Positive Positioning Relay

Figure 1 Pliping Connections.

MORE INFO
Scan the QR code or visit the link below for more information.

Visit:
http://goo.gl/LJCLEb

Application

Positive positioner pneumatic relay is used to accurately position an actuator stroke with respect to signal pressure from the controller. It can also be used to change the effective spring range of an actuator and increase the capacity of a controller.

Features

For accurate positioning of valve and damper actuators, this positioner utilizes a pilot-operated, relay-type position-sensing mechanism, much more sensitive to actuator position changes than some competitive"force-balance" positioners.

Model Number

Description

AK-42309-500
Positive Positioning Relay with Mounting Linkage.
Note: This model cannot be used with M556, M572, M573, M574 Series actuators. Use N800-0555 positioner with M556, M573, and M574.

Specifications	
Action	Direct (increase in output pressure to actuator with an increase in pilot pressure from controller).
Pilot input	$0 \ldots$ main air pressure, psig.
Output	$0 . .$. main air pressure, psig.
Construction	
Housing	Polysulfone
Diaphragm	Neoprene
Start point	Adjustable 1... 12 psig ($7 \ldots 83 \mathrm{kPa}$).
Span	Adjustable 2... 13 psi ($14 \ldots . .90 \mathrm{kPa}$); factory set at 5 psig .
Stroke	Adjustable $2 \ldots 13 \mathrm{psi}(14 \ldots 90 \mathrm{kPa})$; factory set at 5 psig with feedback spring for $7 / 16 \ldots 5$ " stroke.
Supply air pressure	Clean, oil free, dry air required (refer to EN-123).
Maximum	$30 \mathrm{psig}(207 \mathrm{kPa})$.
Nominal supply	15... 20 psig (103... 138 kPa)
Environment	
Ambient temperature limits	Shipping: $-40 \ldots 160^{\circ} \mathrm{F}\left(-40 \ldots 71^{\circ} \mathrm{C}\right)$. Operating: $32 \ldots 140^{\circ} \mathrm{F}\left(0 \ldots 60^{\circ} \mathrm{C}\right)$.
Humidity	5...95\% R.H., non-condensing.
Locations	NEMA Type 1 (IP10).
Air connection code	Refer to Figure 1
Air connections	
"M" and "B"	Barbed for 1/4" O.D. plastic tubing.
"P"	Dual-contoured for 1/4" O.D. and 5/32" O.D. tubing.
Air consumption for sizing air compressor	$19 \mathrm{scim}(5.2 \mathrm{~mL} / \mathrm{s})$ at 20 psig (138 kPa) supply.
Air capacity for sizing air mains	$20 \operatorname{scim}(5.5 \mathrm{~mL} / \mathrm{s})$.
Flow capacity	$860 \mathrm{scim}(235 \mathrm{~mL} / \mathrm{s})$ at 20 psig (138 kPa) supply.
Mounting linkage	All necessary linkage provided to assemble AK-42309-500 to MK-2690 actuator and the following actuator series; MK-3000, MK-4400, MK-4600, MK-4700, MK-4800, MK-6600, MK-6800, MK6900, MK-7100, MK-8800 and MK-8900.
Dimensions	$21 / 2 \mathrm{H} \times 41 / 2 \mathrm{~W} \times 3 \mathrm{D}$ " (64 x $114 \times 76 \mathrm{~mm})$.
Regulatory Compliance	RoHS and REACh

Eco-5truxure

KFM Holdings - Malaysia
KFM Holdings SON BHD teams up with
Schneider Electric to equip Malaysia PMO with Building Management Systems.
5. VB-8/9000 Series Globe Valves Sizing and Selection

Specify Two Part Number Fields (2 and 6 below) to determine the Valve Part Number

Control
Signal

Ordering VB-8000, VB-9000 Valves

931 = 3-Way, Mixing, Brass Trim, Metal-to-Metal (One end port is "Common")

[^7]5. VB-8/9000 Series Globe Valves Sizing and Selection

2-Way and 3-Way Valves

2-Way Stem Up Open or Stem Up Closed
3-Way Mixing/Diverting ASA 125 Flanged Cast Iron Body

VB-8223

Schneider Electric VB-8213, VB-8223, \& VB-8303 Valve Bodies					
Ports		2-Way Flanged		3-Way Flanged	
Application		Chilled or Hot Water, Steam ${ }^{\text {i }}$		Chilled or Hot Water ${ }^{\text {i }}$	
Size		$2^{1 / 2}{ }^{\prime \prime} \ldots . .6{ }^{\prime \prime}$			
Valve Body Part Number		VB-8213-0-5-P	VB-8223-0-5-P	VB-8303-0-5-P	
Valve Body Action		2-Way Stem Open	2-Way Stem Up Closed	3-Way Mixing/Diverting ${ }^{\text {a }}$	
Material	Flow Type	Equal \%		Modifier Linear	
	Body	Cast Iron			
	Seat	Forged Brass			
	Stem	Stainless Steel			
	Plug	Forged Brass			
	Packing	Spring Loaded TFE/EPDM			
	Seat Ring	EPDM		None	
ANSI Pressure Class, psig		125 (up to 200 psig below $150^{\circ} \mathrm{F}$)			
Maximum Inlet Pressure Steam psig (kPa)		$35 \mathrm{psig}(241 \mathrm{kPa})$		-	
Allowable Control Media Temperature ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)^{\mathrm{b}}$		$20^{\circ} \mathrm{F} \ldots 281^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C} \ldots 138^{\circ} \mathrm{C}\right)$			
Close-Off Pressure, psi (kPa)		$125 \mathrm{psi}(856 \mathrm{kPa})^{\mathrm{c}}$		$35 \mathrm{psi}(241 \mathrm{kPa})^{\text {c }}$	
P Code	Valve Size, In.	Cv (kvs)		Cv (kvs) Mixing ${ }^{\text {d }}$	Cv (kvs) Diverting ${ }^{\text {e }}$
12	21/2	56 (48)	56 (48)	80 (69)	95 (82) ${ }^{\text {f }}$
					115 (99) ${ }^{\text {g }}$
13	3	85 (74)	85 (74)	110 (95)	$120(104)^{\mathrm{h}}$
14	4	145 (125)	145 (125)	190 (164)	$190(164)^{\mathrm{h}}$
15	5	240 (208)	240 (208)	290 (251)	$290(251)^{\mathrm{h}}$
16	6	370 (320)	370 (320)	500 (433)	$500(433){ }^{\text {h }}$

a - VB-8303 valves may be used as mixing or Diverting valves. VB-8303 valves will also operate sufficiently as 2-Way angle valves if either end (side) port is closed off.
b - Freeze protection required for temperatures below $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$. Avoid ice formation on stems. c -Valve port in closed position. See Specifications in following pages for maximum allowable VB$8 x x x$ differential pressure for valve in any open position.
$d-$ Mixing configuration, ports A and B are inlets, port $A B$ is outlet (located on bottom).
e - Diverting configuration, port $A B$ is inlet, ports A and B are outlets. Port $A B$ located on bottom.
f - Diverting configuration, flow $A B$ to A ports.
g - Diverting configuration, flow $A B$ to B ports.
h - All Diverting flow configurations, flow $A B$ to either A or B ports.
i- Glycol up to 50\%

VB-8000 3-Way Flow Patterns

Application

VB-9313 series 3-Way mixing valves control hot or chilled water in heating or air conditioning systems. These valves must be piped with two inlets ("A" and "B" ports) and one outlet ("AB" port). They are used for two-position or proportional control applications. Valve assemblies require an actuator and a Linkage that may be factory or field assembled.

Features

- Valve sizes $21 / 2{ }^{\prime \prime} \ldots 6^{\prime \prime}$.
- 125 psig pressure rating per ANSI Standards (B16.1-1993) for flanged cast iron bodies.
- Spring-loaded TFE \& EPDM packing.

Specifications				Valve Body Series VB-9313-0-5-P
Application				Chilled or Hot Water ${ }^{\text {c }}$
Flow Characteristics				Mixing
Sizes				$2^{1 / 2}{ }^{\prime \prime} \ldots . .6$ "
Type of End Fitting				125 lb . Flanged
Valve Materials	Body			Cast Iron
	Seat			Bronze
	Stem			Stainless Steel
	Plug			Brass
	Packing			Spring Loaded TFE \& EPDM
	Disc			None
ANSI Pressure Class, psig				$\begin{aligned} & 125 \text { (up to } 200 \text { psig below } \\ & 150^{\circ} \mathrm{F} \text {) } \end{aligned}$
Allowable Control Media Temperature, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$				$40^{\circ} \mathrm{F} \ldots 300^{\circ} \mathrm{F}\left(4^{\circ} \mathrm{C} \ldots 149^{\circ} \mathrm{C}\right)$
Allowable Differential Pressure, Water, psi (kPa) a				35 psi (241 kPa) Max. for Normal Life
Valve Size, In.	$\begin{aligned} & \mathrm{Cv}^{\mathrm{b}} \\ & \text { Rating } \end{aligned}$	kvs ${ }^{\text {b }}$ Rating	Stroke	Complete Valve Body Part Number
$21 / 2$	74	64	7/8" (22 mm)	VB-9313-0-5-12
3	101	87	7/8" (22 mm)	VB-9313-0-5-13
4	170	147	7/8" (22 mm)	VB-9313-0-5-14
5	290	251	13/4" (45 mm)	VB-9313-0-5-15
6	390	337	13/4" (45 mm)	VB-9313-0-5-16

a - Maximum recommended differential pressure in open position. Do not exceed the recommended differential pressure (pressure drop) or integrity of parts may be affected Exceeding maximum recommended differential pressure voids the product warranty. $\mathrm{b}-\mathrm{kv} \mathrm{s}_{\mathrm{s}}=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{kv} \mathrm{s}_{\mathrm{s}}=\mathrm{Cv} / 1.156 \quad \mathrm{Cv}=\mathrm{gpm} / \sqrt{ } \Delta \mathrm{P}$ (in psi).
c - Glycol up to 50\%

VB-93xx 3-Way Mixing Flow Pattern

5. VB-8/9000 Series Globe Valves Sizing and Selection

Sizing for Water

Two-Position

Two-position control valves are normally selected "line Size" to keep pressure drop at a minimum. If it is desirable to reduce the valve below line size, then 10% of "available pressure" (that is, the pump pressure differential available between supply and return mains with design flow at the valve location) is normally used to select the valve.

Proportional and Floating

Proportional and floating control valves are usually selected to take a pressure drop equal to at least 50\% of the "available pressure." As "available pressure" is often difficult to calculate, the normal procedure is to select the valve using a pressure drop at least equal to the drop in the coil or other load being controlled (except where small booster pumps are used) with a minimum recommended pressure drop of $5 \mathrm{psi}(34 \mathrm{kPa})$. When the design temperature drop is less than $60^{\circ} \mathrm{F}\left(33^{\circ} \mathrm{C}\right)$ for conventional heating systems, higher pressure drops across the valve are needed for good results.

Conventional Heating System Pressure Drops

Design Temperature Load Drop ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	Recommended Pressure Drop (\% of Available Pressure)	Multiplier on Load Drop
$60(33)$ or more	50%	$1 \times$ Load Drop
$40(22)$	66%	$2 \times$ Load Drop
$20(11)$	75%	$3 \times$ Load Drop

Reducer Affects

On full flow bodies, offset the affects of directly connected reducer(s) by choosing flow coefficients 6\% or more higher.

Cv (Flow Coefficient) Determination

The valves' water capacity is based on the following formula:

$$
C v=\frac{G P M}{\sqrt{\Delta P}} \text { or } C v=G P M \sqrt{\frac{\text { Specific Gravity }}{\Delta P}}
$$

Where:
Cv = Coefficient of flow
Cv is defined as the flow in GPM with $\Delta \mathrm{P}=1 \mathrm{psi}$ with the valve completely open

GPM $=$ U.S. gallons per minute $\left(60^{\circ} \mathrm{F}, 15.6^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{P}=$ Differential pressure in psi (pressure drop)

Proportional 3-Way Valves

Recommended Pressure Drop

Bypass Application

50% of "available pressure," or equal to pressure drop through the load at full flow.
3-Way valves in the return used to control output by throttling water flow to the load (bypass applications) are controlling output in the same manner as throttling 2-Way valves, and must be selected using the same high pressure drops if good control results are to be obtained.

Constant Flow Applications

20% of "available pressure," or equal to $1 / 4$ of the pressure drop through the load at full flow.
3-Way valves used with individual pumps to control output by varying water temperature to the load (constant flow applications) are controlling output by mixing two water sources at different temperatures and do not require high pressure drops for good control results.

Water Capacity Graph Instructions

To select the appropriate valve Cv from the Graph:

1. Select the required flow from the "Flow in GPM" axis.
2. Select available pressure drop from the "Pressure Drop in psi" axis.
3. Select the appropriate line and follow to the Capacity Cv (Kv) listing and choose the closest valve Cv flow coefficient.
4. Confirm the selection by calculation from the water equations.

5. VB-8/9000 Series Globe Valves Sizing and Selection

System Design Considerations

Note: The information in this section describes characteristics of the VB-8xx3 valve bodies, which are used in the $V x-8 x x 3$ valve assemblies.

Control Precision

2-Way Valves:

The flow curve shown below is representative of all sizes. All valve plugs have lower gain when nearly closed to enhance control at low demand. 2-Way valves are nominally equal percentage and normally used for water and low pressure steam.

Typical Modified Equal Percentage Flow Characteristics

Temperature/Pressure Ratings

Temperature and pressure ratings of 2-Way and 3-Way valves are shown below. Ratings conform with published values and disclaimer.

169 psig
(1166 kPa)

3-Way Valves:

3-Way mixing valves are designed so that the flow from either of the inlet ports to the outlet is nominally linear, which means the total flow from the outlet is almost constant over the stroke of the valve stem. The flow is limited at the initial opening similar to an equal percentage curve to enhance system stability. Typical flow characteristics of the VB-8303 series valve bodies are shown below.

Typical Flow Characteristics

Rangeability

Rangeability is the ratio of rated flow to the minimum controllable flow through a valve. The nominal rangeability of the VB-8xx3 Series is greater than 100:1.

VB-8xx3-0-5-P (Cast Iron Body with Flanged End Fittings)

Standards: Pressure to ANSI B16.1, Class 125, with 200 psi (1379 $\mathrm{kPa})$ up to $150{ }^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$, decreasing to $169 \mathrm{psi}(1165 \mathrm{kPa})$ at $281^{\circ} \mathrm{F}$ (138 ${ }^{\circ} \mathrm{C}$).

Materials: Valve body: Cast iron, ASTM A126 Class B.
Trim: Stainless steel stem, forged brass plug, metal-to-metal or EPDM seat ring with TFE/EPDM packing parts and silicone packing grease.

Close-off Ratings
Nominal actuator close-off ratings are based on ANSI IV (0.01\% leakage) for valves with EPDM seat rings such as VB-8213 and VB-8223. Metal-to-metal trim valves such as VB-8303 are designed for ANSI III (0.1\% leakage).

VB-82x3 Water Flow Coefficient and Capacity

Water Flow Coefficient (Cv)

Sizing a valve requires selecting a flow coefficient (Cv), which is defined as the flow rate in gallons per minute (gpm) of $60^{\circ} \mathrm{F}$ water that will pass through the fully open valve with a 1 psi pressure drop ($\Delta \mathrm{P}$). It is calculated according to the formulas shown in Cv Equation for Water and Cv Equation for Steam.
Since the flow rate through the heat exchanger is usually specified, the only variable normally available in sizing a valve is the pressure drop. The following information can be used to determine what pressure drop to use in calculating a valve Cv. Using the calculated Cv, consult the Water Capacity table on this page or the Steam Capacity to select the valve body with the nearest available Cv.
Caution: Be sure that the anticipated pressure drop across the valve will not exceed the close-off pressure rating and the maximum pressure differential rating listed in the $V x-8 x x x$ Selection Guide, F-27199.

Two-position

Two-position control valves are normally selected "line Size" to keep pressure drop at a minimum. If it is desirable to reduce the valve below line size, then 10% of "available pressure" (that is, the pump pressure differential available between supply and return mains with design flow at the valve location) is normally used to select the valve.

Proportional

Proportional control valves are usually selected to take a pressure drop equal to at least 50% of the "available pressure." As "available pressure" is often difficult to calculate, the normal procedure is to select the valve using a pressure drop at least equal to the drop in the coil or other load being controlled (except where small booster pumps are used) with a minimum recommended pressure drop of $5 \mathrm{psi}(34 \mathrm{kPa})$. When the design temperature drop is less than $60^{\circ} \mathrm{F}\left(33^{\circ} \mathrm{C}\right)$ for conventional heating systems, higher pressure drops across the valve are needed for good results (see the table Conventional Heating System below).

Conventional Heating System Pressure Drops

Design Temperature Load Drop ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	Recommended Pressure Drop (\% of Available Pressure)	Multiplier on Load Drop
$60(33)$ or More	50%	$1 \times$ Load Drop
$40(22)$	66%	$2 \times$ Load Drop
$20(11)$	75%	$3 \times$ Load Drop

Secondary Circuits with Small Booster Pumps: 50% of available pressure difference (equal to the drop through load, or 50% of booster pump head).

Water Table

Water Capacity in Gallons Per Minute for VB-82x3 Series

Valve Body Part Number	Cv Rating	Differential Pressure (DP in psi)														
		1	2	3	4	5	6	7	8	9	10	15	20	25	30	35
VB-82x3-0-5-12	56	56	79	97	112	125	137	148	158	168	177	217	250	280	307	331
VB-82x3-0-5-13	85	85	120	147	170	190	208	225	240	255	269	329	380	425	466	503
VB-82x3-0-5-14	145	145	205	251	290	324	355	384	410	435	459	562	648	725	794	858
VB-82x3-0-5-15	240	240	339	416	480	537	588	635	679	720	759	930	1073	1200	1315	1420
VB-82x3-0-5-16	370	370	523	641	740	827	906	979	1047	1110	1170	1433	1655	1850	2027	2189

Cv Equation for Water

Where:

$$
\mathrm{Cv}=\frac{\mathrm{GPM}}{\sqrt{\Delta \mathrm{P}}} \quad \Delta \mathrm{P}=\left(\frac{\mathrm{GPM}}{\mathrm{CV}}\right)^{2} \quad \mathrm{GPM}=\mathrm{CV} \sqrt{\Delta \mathrm{P}}
$$

Cv = Coefficient of flow.
gpm = Flow rate of water that will pass through fully open valve, measured in U.S. gallons per minute $\left(60^{\circ} \mathrm{F}\left(15.6^{\circ} \mathrm{C}\right)\right.$ water $)$.
DP = Differential pressure (pressure drop), measured in psi.

VB-82x3 Steam Capacity \&
 Vapor Pressures

Steam

Two-Position

Two-position zone valves and direct radiation valves are normally sized using a minimum of 10% of inlet pressure (psig).
Proportional
Proportional control valves are normally sized using:

- For low pressure (15 psig or less), use $\Delta \mathrm{P}$ of 80% of gauge inlet pressure.
- For steam pressures greater than 15 psig, use $\Delta \mathrm{P}$ of 42% of absolute (gauge plus 14.7) inlet pressure.
- When the Cv required is between two valve sizes, select the larger size. Do not size steam valves using a pressure drop greater than 42% of the absolute inlet pressure.

Steam Table

Steam Capacity in Pounds Per Hour for VB-82×3 Series

Valve Body Part Number	Cv Rating	Differential Pressure (DP in psi) ${ }^{\text {a }}$															
		2 psig Inlet		5 psig Inlet		10 psig Inlet		15 psig Inlet		20 psig Inlet		25 psig Inlet		30 psig Inlet		35 psig Inlet	
		0.2	1.6	0.5	4	1	8	1.5	12	2	14	2.5	16	3	18	3.5	20
VB-82x3-0-5-12	56	305	826	520	1331	818	1942	1093	2448	1359	2860	1620	3271	1879	3683	2136	4094
VB-82x3-0-5-13	85	463	1253	790	2021	1241	2947	1658	3716	2062	4341	2459	4965	2852	5590	3242	6214
VB-82x3-0-5-14	145	790	2138	1348	3447	2118	5027	2829	6339	3518	7405	4195	8470	4865	9536	5531	10601
VB-82x3-0-5-15	240	1308	3539	2231	5706	3505	8322	4683	10493	5823	12257	6943	14021	8053	15784	9156	17548
VB-82x3-0-5-16	370	2016	5456	3439	8796	5404	12830	7219	16177	8977	18896	10704	21615	12415	24334	14115	27053

a - Left column shows \# per hour with a 10% pressure drop and right column shows \# per hour with an 80% pressure drop.
Cv Equation for Steam

$$
C v=\frac{Q \times K}{3 \sqrt{\Delta P \times P} 2} \quad Q=\frac{3 C v \sqrt{\Delta P \times P 2}}{K}
$$

Where:
$\mathrm{Cv}=$ Coefficient of flow.
Q = Flow rate of steam that will pass through fully open valve, measured as pounds per hour of steam.
$\Delta \mathrm{P}=$ Differential pressure (pressure drop), measured in psi.
P2 = Outlet pressure, measured in psia (absolute pressure). $\mathrm{P} 2=$ Inlet pressure $+14.7-\Delta \mathrm{P}$.
$K=1+\left(0.0007 \times{ }^{\circ} \mathrm{F}\right.$ superheat). $\mathrm{K}=1$ for saturated steam.

Cavitation Limitations on Valve Pressure Drop

A valve selected with too high a pressure drop can cause erosion of discs and/or wire drawing of the seat. In addition, cavitation can cause noise, damage to the valve trim (and possibly the body), and choke the flow through the valve.
Do not exceed the maximum differential pressure (pressure drop) for the valve selected.
The following formula can be used on higher-temperature water systems, where cavitation could be a problem, to estimate the maximum allowable pressure drop across the valve:
$P m=0.5(P 1-P v)$
Where:
Pm = Maximum allowable pressure drop
P1 = Absolute inlet pressure (psia)
$\mathrm{P} V=$ Absolute vapor pressure (psia)
Note: Add 14.7 psi to the gauge supply pressure to obtain the absolute pressure value.
For example, if a valve is controlling $200^{\circ} \mathrm{F}$ water at an inlet pressure of 18 psig , the maximum pressure drop allowable would be:
$\mathrm{Pm}=0.5[(18+14.7)-11.53]=10.6 \mathrm{psi}\left(\right.$ Vapor pressure of $200^{\circ} \mathrm{F}$ water is 11.53 psi.$\left.\right)$
Therefore, if the pressure drop for this valve is less than 10.6 psi, cavitation should not be a problem.
Systems where cavitation is shown to be a problem can sometimes be redesigned to provide lower inlet velocities. Valves having harder seat materials should be furnished if inlet velocities cannot be lowered.
For additional valve sizing information, see the Vx-8xxx Selection Guide, F-27199.
Vapor Pressure of Water Table

Water Temp. $\left({ }^{\circ} \mathrm{F}\right)$	Vapor Pressure (psia)	Water Temp. $\left({ }^{\circ} \mathrm{F}\right)$	Vapor Pressure (psia)	Water Temp. $\left({ }^{\circ} \mathrm{F}\right)$	Vapor Pressure (psia)	Water Temp. $\left({ }^{\circ} \mathrm{F}\right)$	Vapor Pressure (psia)
40	0.12	90	0.70	140	2.89	190	9.34
50	0.18	100	0.95	150	3.72	200	11.53
60	0.26	110	1.28	160	4.74	210	14.12
70	0.36	120	1.69	170	5.99	220	17.19
80	0.51	130	2.22	180	7.51	230	20.78

5. VB-8/9000 Series Globe Valves Sizing and Selection

VB-9313 Valve Body
 Characteristics

Flow Characteristics

3-Way mixing valves are designed so that the flow from either of the inlet ports to the outlet is approximately linear, which means the total flow from the outlet is almost constant over the stroke of the valve stem. Typical flow characteristics of
VB-9313 series valve bodies are shown below.

Typical Flow Characteristics

Rangeability

Rangeability is the ratio of rated flow to the minimum controllable flow through a valve. For mixing valves, control begins as soon as plug displacement allows flow. Thus, 3-Way valve rangeability normally exceeds 500:1, which is the reciprocal of 0.2% nominal leakage.

Temperature/Pressure Ratings

VB-9313-0-5-P (Flanged Cast Iron Body)
Standards: ANSI B16.1-1993
Materials: ASTM A126 Class B

Pressure - psig (kPa)
Temperature and Pressure Ratings for VB-9313 Series Valve Bodies

Water

Two-position

Two-position control valves are normally selected "line Size" to keep pressure drop at a minimum. If it is desirable to reduce the valve below line size, then 10% of "available pressure" (that is, the pump pressure differential available between supply and return mains with design flow at the valve location) is normally used to select the valve.
Proportional to Bypass Flow
Proportional mixing valves used to bypass flow are piped on the outlet side of the load to throttle the water flow through the load and therefore control heat output of the load. These valves are usually selected to take a pressure drop equal to at least 50% of the "available pressure." As "available pressure" is often difficult to calculate, the normal procedure is to select the valve using a pressure drop at least equal to the drop in the coil or other load being controlled (except where small booster pumps are used) with a minimum recommended pressure drop of 5 psi (34 $\mathrm{kPa})$. When the design temperature drop is less than $60^{\circ} \mathrm{F}\left(33^{\circ} \mathrm{C}\right)$ for conventional heating systems, higher pressure drops across the valve are needed for good results (see Conventional Heating System Pressure Drops table below).
Conventional Heating System Pressure Drops

Design Temperature Load Drop ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	Recommended Pressure Drop* (\% of Available Pressure)	Multiplier on Load Drop
$60(33)$ or More	50%	$1 \times$ Load Drop
$40(22)$	66%	$2 \times$ Load Drop
$20(11)$	75%	$3 \times$ Load Drop

* Recommended minimum pressure drop $=5 \mathrm{psi}(34 \mathrm{kPa})$.

Secondary Circuits with Small Booster Pumps:13 50\% of available pressure difference (equal to the drop through load, or 50% of booster pump head).

VB-9313 Water Flow Coefficient and Capacity

Proportional to Blend Water Flows

Proportional valves used to blend two water flows control the heat output by varying the water temperature to the load at constant flow. These valves do not require high pressure drops for good control results. They can be sized for a pressure drop of 20% of the "available pressure" or equal to 25% of the pressure drop through the load at full flow.

Water Table

Water Capacity in Gallons Per Minute for VB-9313 Series.

Valve Body Part Number	Cv Rating	Differential Pressure ($\Delta \mathrm{P}$ in psi)														
		1	2	3	4	5	6	7	8	9	10	15	20	25	30	35
VB-9313-0-5-12	74	74	105	128	148	165	181	196	209	222	234	287	331	370	405	438
VB-9313-0-5-13	101	101	143	175	202	226	247	267	286	303	319	391	452	505	553	598
VB-9313-0-5-14	170	170	240	294	340	380	416	450	481	510	538	658	760	850	931	1006
VB-9313-0-5-15	290	290	410	502	580	648	710	767	820	870	917	1123	1297	1450	1588	1716
VB-9313-0-5-16	390	390	552	675	780	872	955	1032	1103	1170	1233	1510	1744	1950	2136	2307

Cv Equation

Where:
CV = Coefficient of flow
GPM $=$ U.S. gallons per minute $\left(60^{\circ} \mathrm{F}, 15.6^{\circ} \mathrm{C}\right)$
$\Delta \mathrm{P}=$ Differential pressure in psi (pressure drop)

Cavitation Limitations on Valve Pressure Drop

A valve selected with too high a pressure drop can cause erosion of discs and/or wire drawing of the seat. In addition, cavitation can cause noise, damage to the valve trim (and possibly the body), and choke the flow through the valve.
Do not exceed the maximum differential pressure (pressure drop) for the valve selected.
The following formula can be used on higher-temperature water systems, where cavitation could be a problem, to estimate the maximum allowable pressure drop across the valve:
$\mathrm{Pm}=0.5(\mathrm{P} 1-\mathrm{Pv})$
Where:
$\mathrm{Pm}=$ Maximum allowable pressure drop
P1 = Absolute inlet pressure (psia)
Pv = Absolute vapor pressure (psia) (Refer to the table below.) Note: Add 14.7 psi to the gauge supply pressure to obtain the absolute pressure value.
For example, if a valve is controlling $200^{\circ} \mathrm{F}$ water at an inlet pressure of 18 psig, the maximum pressure drop allowable would be:
$\mathrm{Pm}=0.5[(18+14.7)-11.53]=10.6 \mathrm{psi}$ (Vapor pressure of $200^{\circ} \mathrm{F}$ water is 11.53 psi.)
Therefore, if the pressure drop for this valve is less than 10.6 psi, cavitation should not be a problem.

Systems where cavitation is shown to be a problem can sometimes be redesigned to provide lower inlet velocities. Valves having harder seat materials should be furnished if inlet velocities cannot be lowered.
For additional valve sizing information, see the $\mathrm{Vx}-8 \mathrm{xxx}$ Selection Guide, F-27199.
$C v=\frac{G P M}{\sqrt{\Delta P}}$
$\Delta P=\left(\frac{\mathrm{GPM}}{\mathrm{Cv}}\right)^{2}$
$G P M=C V \sqrt{\Delta P}$

VB-8xx3/9313 Close-Off Pressure Capability

Vapor Pressure of Water Table

Water Temp. $\left({ }^{\circ} \mathrm{F}\right)$	Vapor Pressure (psia)	Water Temp. $\left({ }^{\circ} \mathrm{F}\right)$	Vapor Pressure (psia)	Water Temp. $\left({ }^{\circ} \mathrm{F}\right)$	Vapor Pressure (psia)	Water Temp. $\left({ }^{\circ} \mathrm{F}\right)$	Vapor Pressure (psia)
40	0.12	90	0.70	140	2.89	190	9.34
50	0.18	100	0.95	150	3.72	200	11.53
60	0.26	110	1.28	160	4.74	210	14.12
70	0.36	120	1.69	170	5.99	220	17.19
80	0.51	130	2.22	180	7.51	230	20.78

Seat Leakage Classes

ANSI/FCI 70-2 Leakage Class	Maximum Seat Leakage
Class II	0.5% of rated CV
Class III	0.1% of Rated CV
Class IV	0.01% of Rated CV
Class V	0.0005 ml per minute per inch of orifice diameter per psi differential

Close-off Ratings (Unless Otherwise Specified)
Nominal actuator close-off ratings are based on ANSI V with EPDM discs; and PTFE discs in steam applications. Metal-to-metal trim, such as brass 3-Way and high-temperature stainless, are designed for ANSI III (0.1-\% leakage).

Note: Valve body and actuator size determine the close-off capabilities.

Eco= ${ }^{\text {truxure }}$

Innovation At Every Level

2-Way and 3-Way Valves
21/2"...6" Flanged
2-Way Stem Up Open
2-Way Stem Up Closed
3-Way Mixing/Diverting
Electric/Electronic/Pneumatic
Globe Valve Assemblies

VB-8213 with M1500A Actuator

Vx-82x3 with $M x 4 x-6343\left(2^{1} / 2^{\prime \prime}-5^{\prime \prime}\right.$ with AV-607-1 6" with AV-609-1)

VK-82xx with MK-6911

Vx-8xx3 Series Balanced Globe Valve Assemblies

Schneider Electric VA, VF, VK, VK4, VS and VU-8xx3-xxx-5-P series valve assemblies are complete actuator/valve assemblies that accept two-position, floating, and proportional electric/electronic and proportional pneumatic control signals, for control of chilled water, hot water, or low pressure steam. These valve assemblies consist of pneumatic, electric, or electronic valve actuators either direct-coupled or linked to a $21 / 2^{\prime \prime} \ldots 6$ " 2 -Way or 3 -Way valve body with ASA flanged end connections.

VB-8xx3 Series Valve Bodies

VB-8xx3-0-5-P valve bodies are also available separately to allow field mounting of a variety of Forta, Schneider Electric SmartX or pneumatic actuators using the appropriate linkage.

Features

- Balanced plug design provides high close-offs using economical actuation
- Up to 125 psi (856 kPa) close-off on 2-Way models, $35 \mathrm{psi}(240 \mathrm{kPa})$ on $3-W a y$ models
- Universal 3-Way valve can be piped in either mixing or Diverting configurations
- Valve sizes $21 / 2 " \ldots 6$ ", ASA 125 flanged
- A variety of Forta, Schneider Electric SmartX and pneumatic actuators are available, either as factory assemblies or for field assembly
- ANSI IV shutoff (0.01% of CV) on 2-Way models, ANSI III (0.1% of CV) on 3-Way models
- Self-adjusting spring loaded TFE/EPDM packing
- Normally open,normally closed, and non-spring return models available
- Expanded temperature range of 20° to $281^{\circ} \mathrm{F}$
- ISO 9001:2000 Certified Quality Management System
- $\quad V x-9313$ 3-Way mixing valves offer many of the same features as the VB-8xx3 vales and a conventional mixing valve flow pattern.

Vx-8303/Vx-9313 with Mx61-720x Direct-Mounted Actuator
6. VB-8/9000 Series Valve and Actuator Assemblies

Globe Valve Assembly Selection Procedure

When selecting a globe valve assembly, you must determine the applicable codes for the control signal type, valve body configuration, end connection, port size and actuator. Select a globe valve assembly part number as follows:

1. Control Signal Type, Valve Body Configuration and End Connection

Refer to Pg. 111, Ordering VB-8000, VB-9000 Valve Assemblies and select the appropriate codes for the part-number fields.

2. Valve Size (Flow Coefficient)

If the required flow coefficient (Cv) has not been determined, do so as follows:
a. Refer to Sizing and Selection to calculate the required Cv. b. Select the nearest available Cv value and corresponding valve body port code.

VB-8000, VB-9000 Assembly Selection Procedure

3. Actuator \& Linkages

Select the appropriate actuator and code, according to Assembly Ordering based on the control signal type, required valve normal position, and voltage requirements. For detailed actuator information, refer to the applicable actuator specifications on subsequent pages.

Note: Linkages shown in Specification tables are supplied with the actuator. When shown in Optional Accessories the linkage must be ordered separately.

4. Close-off Pressure

Confirm that the selected actuator and valve body combination provides sufficient close-off pressure. If no close-off pressure is shown, the valve body/actuator combination is not valid.

5. Available Space

If available space is a consideration, check the appropriate dimensions in the separately available Wiring, Dimensions and Reference document F-28125 from the Exchange Download Center.

Specify Four Part Number Fields (1, 2, 4 and 6 below) to determine the Valve Actuator Assembly Part Number

1) Control Signal

Refer to the guide below.
2) Trim and Valve
Configuration
3) Pipe End
Connections

Flanged for all valves.

Actuator or Linkage

Refer to the following pages for Spring \& NonSpring Return Electric and Pneumatic Spring Return Actuator Codes, based on required close-off pressure.
5) Pattern $\begin{aligned} & \text { Code }\end{aligned}$

Specify Option 5 (Flanged) for all valves.
6) Port Code $\begin{aligned} & \text { Cv Value }\end{aligned}$

For water, steam, glycol and similar non flammable, non toxic fluids, choose based on capacity sizing in this chapter. Below $21 / 2^{\prime \prime}$, go to Pg. 25, 2. VB-7000 Series Globe Valves and Sizing and Selection.

Ordering VB-8000, VB-9000 Valve Assemblies

NOTE: Threaded bodies are not available in size $21 / 2^{\prime \prime}$ and larger.

VB-8XX3/9313 Close-Off Ratings

The following tables offer a quick guide to valve actuator combination / close-off ratings. Please refer to specific close-off ratings.
VB-8xx3 and VB-9313 Close-off Ratings

a - VB-8xxx - First value $=$ maximum close off pressure, Second value $=$ maximum operating differential. (Example: 125/35).
b - VB-9213/VB-9223 2-Way valves have the same close offs as VB-9313 valves.
c - VB-8xx3 valves use AV-497 linkage, VB-9313 valves use AV-495 linkage.
d - AV-607-1 ($21 / 2^{\prime \prime} \ldots 5^{\prime \prime}$ VB-8000 valves or $2^{1} / 2^{\prime \prime} \ldots 4^{\prime \prime}$ VB-9313 valves), the Mx41-634x actuator is not compatible with the AV-607-1 linkage.
e - AV-609-1 (6" VB-8000 valves or 5"...6" VB-9313 valves), the AV-609-1 linkage can be used with the M×41-634x actuator on 2
$1 / 2 " \ldots 5^{\prime \prime}$ VB-8000 valves or $21 / 2^{\prime \prime} \ldots 4^{\prime \prime}$ VB- 9313 valves, but the valve will stroke over a shorter portion of the control input signal
f - Stem up (B to AB flow, A port closed. stem down (A to AB flow, B port closed)
*d and u indicate d (stem down) u (stem up)

U-Bolt Mount

MORE INFO VB-8303 Scan the QR code or visit the link below for more information.

Visit: http://goo.gl/3fMhfY

MORE INFO VB-8213 Scan the QR code or visit the link below for more information.

Visit:
http://goo.gl/VEAV7e

VB-82x3 2-Way Globe Valves with NSR Actuators

Valve Actuator Combinations and Operating Pressure Differentials

Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

a - See Pg. 111, VB-8000, VB-9000 Assembly Selection Procedure for the relevant part series to determine a specific part no.
$\mathrm{b}-\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{gpm}}{\Delta \mathrm{P}}$ (where $\Delta \mathrm{P}$ is measured in psi) $\quad \mathrm{kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{~K}_{\mathrm{vs}}=\frac{m^{3} / \mathrm{h}}{\Delta P} \quad$ (where $\Delta \mathrm{P}$ is measured in bar;
c - Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for
quieter service. Consult close-off pressure ratings.
d - Dual actuators are not available as a factory assembly.

VB-8223 with Mx41-634x Actuator

VB-8303 3-Way Globe Valves with NSR Actuators

3-Way Globe Valve Assemblies

Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

Non-Spring Return (NSR) 3-Way Globe Valve Assemblies						Mx41-634x		
					Actuator Out	ut Rating	Minimum)	
					$\begin{gathered} 337 \mathrm{lbf} \\ (1500 \mathrm{~N}) \\ \hline \end{gathered}$		$\begin{aligned} & \text { lb-in } \\ & \mathrm{N}-\mathrm{m}) \end{aligned}$	
					Actuator Model (Actuator Code)			
					Floating/Proportional M1500A (686)	$\begin{array}{r} \text { Fl } \\ \text { MF41-6 } \\ \text { Prop } \\ \text { MS41- } \\ \text { MS41- } \end{array}$	ating 343 (516) rtional 340 (512) 343 (516)	
					Linkage Kit Part Number			
					$\begin{gathered} \text { AV-822 } \\ \left(2^{1 / 2} 2^{\prime \prime} . .6^{\prime \prime}\right) \end{gathered}$	AV-6	9-1 (6")	
	se-of	Pressu	(psi)				35	
Valve Assembly Part	P Code	Valve Size	$\mathrm{Cv}^{\text {b }}$	kvs ${ }^{\text {b }}$	Maximum Differential (Mixi	lowable Pressure ${ }^{\text {C }}$ g/Divertin	perating si (kPa))	
Number ${ }^{\text {a }}$					M1500A	Single Actuator	Dual Actuator ${ }^{\text {d }}$	
$\begin{aligned} & V x-8303- \\ & \text { xxx-5-P } \end{aligned}$	12	21/2	$80^{\text {e }}$	$69^{\text {e }}$	35 (240)	-		
			$95^{\text {f }}$	82^{f}				
			1159	999				
	13	3	$110^{\text {e }}$	$95^{\text {e }}$				
			120^{f}	104^{f}				
			1209	1049				
	14	4	$190^{\text {h }}$	$164{ }^{\text {h }}$				
	15	5	$290{ }^{\text {h }}$	$251{ }^{\text {h }}$				
	16	6	$500^{\text {h }}$	$433^{\text {h }}$		$\begin{aligned} & 32(219) \\ & 28(192) \end{aligned}$	35 (240)	

a - See Pg. 111, VB-8000, VB-9000 Assembly Selection Procedure for the relevant part series to determine a specific part number.
$b^{-} C_{v}=\frac{g p m}{\Delta P}$ (where ΔP is measured in psi) \quad kvs $=C v / 1.156 \quad K_{v s}=\frac{m^{3} / h}{\Delta P} \quad$ (where ΔP is
measured ${ }^{\Delta \mathrm{P}}$ bar; $\left.1 \mathrm{bar}=100 \mathrm{kPa}\right)$.
c - Maximum allowable differential across the valve in any open position. Recommend less than 20 psi
for quieter service. Consult close-off pressure ratings.
d - Dual actuators are not available as a factory assembly.
$e-$ Mixing configuration, ports A and B are inlets, $A B$ port is outlet.
f - Diverting configuration, flow $A B$ to A port.
g - Diverting configuration, flow $A B$ to B port.
h-All flow configurations, mixing or Diverting.

VB-82x3 2-Way Globe Valves
 with SR Actuators

2-Way Globe Valve Assemblies

Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

[^8]3-Way Globe Valve Assemblies
Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

3-Way Globe Valve Assemblies with Spring Return Actuators

a - See Pg. 111, VB-8000, VB-9000 Assembly Selection Procedure for the relevant part series to determine a specific part number.
$\mathrm{b}-\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{gpm}}{\Delta \mathrm{P}}$ (where $\Delta \mathrm{P}$ is measured in psi$) \quad \mathrm{kvs}=\mathrm{CV} / 1.156 \quad \mathrm{~K}_{\mathrm{vs}}=\frac{\mathrm{m}^{3} / \mathrm{h}}{\Delta \mathrm{P}} \quad$ (where $\Delta \mathrm{P}$ is measured in bar; $1 \mathrm{bar}=100 \mathrm{kPa}$).
c - Maximum allowable differential across the valve in any open position. Recommend less than 20 psi for quieter service. Consult close-off pressures.
d - Dual actuators are not available as factory assemblies.
$e-$ Mixing configuration, ports A and B are inlets, $A B$ port is outlet.
f- Diverting configuration, flow $A B$ to A port.
g - Diverting configuration, flow $A B$ to B port.
h - All flow configurations, mixing or Diverting.

3-Way Linked Globe Valve Assemblies with Linear Series Actuators

Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.
3-Way Globe Valve Assemblies
with Linear Spring Return Actuators
a - For piping information refer to the separately available Wiring, Dimensions and Reference document F-28125 from the Exchange Download Center.
b - To determine a specific part number, see Pg. 111, VB-8000, VB-9000 Assembly Selection Procedure for the relevant part series.
$\mathrm{c}-\quad \mathrm{C}_{\mathrm{v}}=\frac{\mathrm{gpm}}{\Delta \mathrm{P}}$ (where $\Delta \mathrm{P}$ is measured in psi) $\quad \mathrm{kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{~K}_{\mathrm{vs}}=\frac{\mathrm{m}^{3} / \mathrm{h}}{\Delta \mathrm{P}} \quad$ (where $\Delta \mathrm{P}$ is measured in bar; $1 \mathrm{bar}=100 \mathrm{kPa}$).
d - Close-off pressure ratings describe only the differential pressure which the actuator can close-off with adequate seating force. Consult valve body specifications for other limitations. The rating value is the pressure difference between the inlet and outlet ports.
6. VB-8/9000 Series Valve and Actuator Assemblies

Vx-9313 3-Way Globe Values with Linked SR Actuators

3-Way Linked Globe Valve Assemblies with Spring Return Actuators

a - For piping information refer to the separately available Wiring, Dimensions and Reference document F-28125 from the Exchange Download Center. b - To determine a specific part number, see Pg. 111, VB-8000, VB-9000 Assembly Selection Procedure for the relevant part series.
$c-k v s=m^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{Cv}=\mathrm{kvs} \times 1.156$
d - Close-off ANSI III (0.1%) for metal-to-metal seats with pressure at inlet (port A).
e-Dual actuators are not available as factory assemblies.

Vx-9313 3-Way Globe Valves with Linked NSR Actuators

a - For piping information refer to the separately available Wiring, Dimensions and Reference document F-28125 from the Exchange Download Center.
b - To determine a specific part number, see Pg. 111, VB-8000, VB-9000 Assembly Selection Procedure for the relevant part series.
$\mathrm{c}-\mathrm{kvs}=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{Cv}=\mathrm{kvs} \times 1.156$
d - Close-off ANSI III (0.1\%) for metal-to-metal seats with pressure at inlet (port A).
e - Dual actuators are not available as factory assemblies.
f - Mx41-634x actuators used on $21 / 2^{\prime \prime}$ to $4^{\prime \prime} V x-9313$ will stroke over a shorter portion of the control input signal.

6. VB-8/9000 Series Valve and Actuator Assemblies

VB-82x3 2-Way Globe Valves with Pneumatic SR Actuators

2-Way Valves

Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Consult the table below for close-off pressure ratings. Not all actuator and valve body combinations are offered as factory assemblies.

a - Spring range field adjustable with positive positioner.
b - AK-42309-500 positive positioner optional for $21 / 2 " \ldots 5$ " valve, required for 6 " valve. Supplied as standard on VK4 factory
valve assemblies. See Pg. 111, VB-8000, VB-9000 Assembly Selection Procedure for the relevant part series to determine a specific part number.
$\mathrm{C}-\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{gpm}}{\Delta \mathrm{P}}$ (where $\Delta \mathrm{P}$ is measured in psi) $\mathrm{Kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{~K}_{\mathrm{vs}}=\frac{\mathrm{m}^{3} / \mathrm{h}}{\Delta \mathrm{P}} \quad($ where $\Delta \mathrm{P}$ is measured in bar; $1 \mathrm{bar}=100 \mathrm{kPa})$
d - Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for quieter service.
Consult close-off pressure ratings.

3-Way Valves

Choose a valve assembly with a maximum operating differential pressure capability sufficient for the application. Not all actuator and valve body combinations are offered as factory assemblies.

a - Spring range field adjustable with positive positioner.
b - AK-42309-500 positive positioner optional for $2 \frac{1}{2}$ "... 5 " valve, required for 6 " valve. Supplied as standard on VK4 factory valve assemblies. See "Pg. 111, VB8000, VB-9000 Assembly Selection Procedure for the relevant part series to determine a specific part number.
$\mathrm{C}-\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{gpm}}{\Delta \mathrm{P}}$ (where $\Delta \mathrm{P}$ is measured in psi) kvs $=C v / 1.156 \quad \mathrm{~K}_{\mathrm{vs}}=\frac{\mathrm{m}^{3} / \mathrm{h}}{\Delta \mathrm{P}} \quad$ (where $\Delta \mathrm{P}$ is measured in bar; $1 \mathrm{bar}=100 \mathrm{kPa}$).
d - Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for quieter service. Consult close-off
pressure ratings.
$\mathrm{e}-$ Mixing configuration, ports A and B are inlets, AB port is outlet.
f - Diverting configuration, flow $A B$ to A port.
g - Diverting configuration, flow $A B$ to B port.
h-All flow configurations, mixing or Diverting.

6. VB-8/9000 Series Valve and Actuator Assemblies

VB-9313 3-Way Globe Valves with Pneumatic SR Actuators

Select Actuator or Actuator Code (xxx) having sufficient close-off for the application. If selecting component parts, select Positive Positioner, if required. NOTE: For higher close-offs, use VB-8303 balanced valves with common bottom port.

$21 / 2^{\prime \prime} \ldots 6^{\prime \prime}$ Flanged Globe Valves with Pneumatic Actuators

$\left.\begin{array}{|c|c|c|c|}\hline \text { Actuator } & \text { MK-6811 } & \text { MK-8811 } & \text { MK-8911 } \\ \hline \text { Effective Area (stroke) } & 50 \text { Sq. In. } & 100 \text { Sq. In. } & 100 \text { Sq. In. } \\ \left(1^{\prime \prime} \text { Stroke }\right)\end{array}\right]$

Actuator Close-Off Pressure Rating (psi) ${ }^{\text {ab }}$

Supply Air Pressure (psig)				15/20	15	20	15/20	15	20	15/20	15	20
Stem Position ${ }^{\text {c }}$				SU	SD	SD	SU	SD	SD	SU	SD	SD
Valve Assembly	Valve Body	$\begin{gathered} P \\ \text { Code } \end{gathered}$	Size in.									
VK4-9313-xx2-5-Pd	VB-9313-0-5-P	-12	2112	30	40	91	60	91	125	-		
		-13	3	20	27	62	40	62				
		-14	4	10	14	33	25	33	73			
VK4-9313-812-5-Pd	VB-9313-0-5-P	-15	5	-						15	20	45
		-16	6							10	13	30

a - Close-off ratings for mixing valves: ($S U=$ " A ", $S D=$ " B " port). " A " port (SU) ratings equal pressure at port " A " minus pressure at port " B ". " B " port (SD) ratings equal pressure at port " B " minus pressure at port " A ". Close-off ratings in the table are true only when the indicated supply air pressure is applied to the actuator. A change in air pressure at the actuator alters the actual close-off pressure.
b-Close-off pressure ratings describe only the differential pressure which the actuator can close-off to standards with adequate seating force. Consult valve body specifications for other limitations.
c - SU - Stem Up; SD - Stem Down. For piping information refer to the separately available Wiring, Dimensions and Reference document F-28125 from the Exchange Download Center for flow pattern.
d - Factory valve assemblies are available only with positive positioner.
e - Includes AV-496 linkage.
f - Includes AV-495 linkage.

VK4-9313 with a MK-6811
Pneumatic Actuator and AK-42309-500 Positive Positioner

Optional Input Signal Interface to Pneumatic Actuator

Input Signal Type	Interface Module Required
Two-Position, SPST (Electric)	AL-1xx
Two-Position, SPDT Snap Acting (Electric)	AL-1xx

Mx41-7153 Series SmartX Actuator (Code 556) 24 Vac (Linkage not shown)

Mx41-7150 Series
 SmartX Actuator
 (Code 552)
 120 Vac (Linkage not shown)

Specifications		
Connection	3 ft . (0.9 m) Appliance cable	
Housing	Aluminum die-cast	
Enclosure Rating	NEMA 2 with conduit connector down	
Dimensions	$10 \frac{1}{2} \times 4 \times 31 / 2(267 \times 110 \times 89 \mathrm{~mm})$	
Linkage	AV-607-1 ($2 \frac{1}{2} 2^{\prime \prime}-5^{\prime \prime}$ VB-8000 valves or $2^{1 / 2} 2^{\prime \prime}-4^{\prime \prime}$ VB-9313 valves) or AV-609-1 (6" VB-8000 valves or 5" - 6" VB-9313 valves)	
Position Indicator	Visual indicator	
Override	Manual	
Motor Type	Brushless	
Rotation	0...90 ${ }^{\circ}$	
Control Signal	MA41-7153: 2-position SPST MF41-7153: Floating MS41-7153: 2... 10 Vdc The $2 \ldots 10 \mathrm{Vdc}$ control signal is factory set for direct action. It can be changed in the field to reverse action.	MA41-7150: 2-position SPST
Voltage	$24 \mathrm{Vac} \pm 20 \%$, 22-30 Vdc	$120 \mathrm{Vac} \pm 10 \%$
VA@60 HZ	9.7	10.0
Feedback	MA41 and MF41: None MS41: 2... 10 Vdc	None
Auxiliary Switch	None	
Timing (seconds)	Powered <190 Spring return <30	
Installation Instructions	F-26642	
	Note: Single mount actuators may be factory assembled, dual mount are field assembled.	Flanged Valve Close-off. 2-Way ratings are better than ANSI IV (0.01% leakage) with EPDM seating. 3-Way ratings are better than ANSI III (0.1% leakage) with metal seating.

Mx40-7173 Series
SmartX Actuator (Code 576) 24 Vac (Linkage not shown)

Mx40-7170 Series SmartX Actuator 120 Vac (Linkage not shown)

Specifications		
Connection	3 ft . (0.9 m) Appliance cable	
Housing	Aluminum die-cast	
Enclosure Rating	NEMA 1, NEMA 4 with customer supplied water tight connector	
Dimensions	$10-7 / 8 \times 4 \times 4(276 \times 100 \times 100 \mathrm{~mm})$	
Linkage	AV-607-1 ($2^{1 ⁄ 2} 2^{\prime \prime}-5^{\prime \prime}$ VB-8000 valves or $2^{1 ⁄ 2} 2^{\prime \prime}-4^{\prime \prime}$ VB-9313 valves) or AV-609-1 (6 " VB-8000 valves or $5 "-6 "$ VB-9313 valves)	
Position Indicator	Visual indicator	
Override	None	
Motor Type	Brushless	
Rotation	0... $90^{\circ} \mathrm{CW}$	
Control Signal	MA41-7173: 2-position SPST MF41-7173: Floating MS41-7173: 2... $10 \mathrm{Vdc} / 4 \ldots 20 \mathrm{~mA}$	MA40-7170: 2-position SPST MS40-7170: 2... $10 \mathrm{Vdc} / 4 \ldots 20 \mathrm{~mA}$
Voltage	$24 \mathrm{Vac} \pm 20 \%$, 22-30 Vdc	$120 \mathrm{Vac} \pm 10 \%$
VA@60 HZ	MA40-7173: 7.4 (AC) MF40-7173: 8.1 (AC) MS40-7173: 7.8 (AC)	MA40-7170: 8.4 MS40-7170: 8.5
Watts @ 60 Hz	MA40-7173: 5.3 (AC) MF40-7173: 5.8 (AC) MS40-7173: 5.5 (AC)	$\begin{aligned} & \text { MA40-7170: } 6.2 \\ & \text { MS40-7170: } 6.4 \end{aligned}$
Feedback	2... 10 Vdc	2...10 Vdc (MS only)
Auxiliary Switch	None	
Timing (seconds)	Powered 147 Spring return 65	Powered 162 Spring return 82
Installation Instructions	MA40-7173: F-26742 MF40-7173: F-26749 MS40-7173: F-26748	MA40-7170: F-26742 MS40-7170: F-26748
	Note: Single mount actuators may be factory assembled, dual mount are field assembled.	Flanged Valve Close-off. 2-Way ratings are better than ANSI IV (0.01% leakage) with EPDM seating. 3-Way ratings are better than ANSI III (0.1% leakage) with metal seating.
		Note: Single mount actuators may be factory assembled, dual mount are field assembled.

Mx61-7203 Series
SmartX Actuator
24 Vac

MORE INFO
Scan the QR code or visit the link below for more information.

Note: Single mount actuators may be factory assembled, dual mount are field assembled.

Mx41-6153 Series
SmartX Actuator
(Code 512)
24 Vac

M $\times 41$-6153

Specifications

Specifications	
Torque	$133 \mathrm{lb}-\mathrm{in} .(15 \mathrm{~N}-\mathrm{m})$.
Connections	$3 \mathrm{ft}$. (0.9 m) long, 18 AWG leads
Rotation	CW / CCW
Shaft Size	1/4 to $3 / 4$-in. (6.4 to 19 mm) dia., $1 / 4$ to $1 / 2$-in. (6.4 to 13 mm) sq.
Enclosure Rating	NEMA Type 1, IP54 according to EN 60529.
Dimensions	8-3/8 H x 3¼ W x 2-2/3 D" (210 x $80 \times 70 \mathrm{~mm}$)
Linkage	AV-607-1 (2½"..4" VB-9313 valves)
Position Indication	Adjustable pointer
Override	Manual
Overload Protection	Throughout rotation.
Angle of Rotation	90° nominal (field adjustable to limit travel on either end of stroke).
Built-in Auxiliary Switches	Dual SPDT auxiliary switches available on MS41-6153-502 only.
Operating Temperature Limits	$-25 \ldots 130^{\circ} \mathrm{F}\left(-32 \ldots 55^{\circ} \mathrm{C}\right)$.
Wiring Diagrams	MF41-6153, MS41-6153
Regulatory Compliance	c-UL-us LISTED per UL 873 and CAN C22.2 No.24-93. CE compliant to directives LVD, EMC, and RoHS2.
Installation Instructions	F-27215

Specifications - Electrical \& Timing							
Part Number	Actuator Inputs			Outputs		Approximate Timing in Seconds	Weight lbs (kg)
	Control	Voltage	$\begin{aligned} & \text { VA @ } \\ & 60 \mathrm{~Hz} \end{aligned}$	Feedback	Auxiliary Switch		
						Powered	
MF41-6153	Floating			None	No		
MS41-6153	0.10 Vdc	$+20 \%-15 \%$	3.0	0. 10 Vdc		<125 (60 Hz)	2.2 (1)
MS41-6153-502	o...10 Vde			O... 10 Vac	2		

Forta
 M800A \& M1500A Actuators 24 Vac - 20-29 Vdc

VB-8000/VB-9313 Forta		
Actuator Application		
Valve Size	M800A* (180 lbf)	M1500A $(3377$ lbf) Size
$2^{1 / 2^{\prime \prime}}$	\cdot	\vdots
$3^{\prime \prime}$	\cdot	\vdots
$4^{\prime \prime}$	\cdot	\cdot
$5^{\prime \prime}$		\cdot
$6^{\prime \prime}$		\cdot

Specifications	
Stroke (M800, M1500)	U-Bolt style: >3/8" to 2" (9-52mm)
Stroke Timing	Floating: 60 or 300 sec selectable, Proportional: $15 \mathrm{sec} @ 1 / 2$ " stroke
Linkage	AV-822
Feedback AO	2... 10 Vdc
Power Supply Type	Half Wave
Motor Type	Brushless DC
Enclosure	NEMA 2 (IP 54, vertical mount only) with both conduit connectors used. NEMA 1 IP40 with one connector used.
Sound Power Level	Maximum 32 dba
Ambient Temperature Storage	$-13^{\circ} \mathrm{F}$ to $149{ }^{\circ} \mathrm{F}\left(-25\right.$ to $\left.65^{\circ} \mathrm{C}\right)$ ambient
Ambient Temperature Operational	$122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ For chilled water applications $113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$ ambient at $281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$ fluid temperature $107^{\circ} \mathrm{F}\left(42^{\circ} \mathrm{C}\right)$ ambient at $300^{\circ} \mathrm{F}\left(149{ }^{\circ} \mathrm{C}\right)$ fluid temperature $100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ ambient at $340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)$ fluid temperature $90^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right)$ ambient at $366^{\circ} \mathrm{F}\left(186^{\circ} \mathrm{C}\right)$ fluid temperature
Minimum Operating Temperature	14° to $150^{\circ} \mathrm{F}\left(-10^{\circ}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$
Ambient Humidity	15... 95 \% RH non-condensing
Housing Material	Die-Cast Aluminum
Cover Material	UL94 plenum rated plastic
Regulatory Compliance	c-UL-us LISTED per UL 873 and CAN C22.2 No.24-93, CE compliant to LVD, EMC, and RoHS2 directives, and RCM marked for AUS/NZ.

Specifications - Electrical \& Control

Model	M800A	M800A-S2	M1500A	M1500A-S2
AC Power	$24 \mathrm{Vac}+-10 \% 50-60 \mathrm{~Hz}$			
DC Power	20-29 Vdc 20 W		20-29 Vdc 30 W	
Running VA	15		24	
Transformer Size VA	50			
Floating Control	Yes			
Proportional Control	$0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}$ or $4 \ldots .20 \mathrm{~mA}$ with 500 ohm resistor			
Feedback	$2 \ldots 10 \mathrm{Vdc}$			
Force	180 lbf (800 N)		337 lbf (1500 N)	
2-SPDT Aux Switch	No	24 Vac 4 a res	No	24 Vac 4 a res

7. VB-8/9000 Series Globe Valve

MK-6811/6911 SR Pneumatic Actuators

MK-6811

MK-6911

MK-6811, MK-6911 Actuator Specifications

Inputs	
Control Signal	$5 \ldots 10$ psig (34... 69 kPa$)$. Positive positioner start point adjustable $1 \ldots 12 \mathrm{psi}(7 \ldots 83 \mathrm{kPa})$. Positive positioner span adjustable 2... $13 \mathrm{psi}(14 \ldots 89 \mathrm{kPa})$
Supply Pressure	$15 \ldots 20 \mathrm{psig}(103 \ldots 137 \mathrm{kPa})$ nominal 30 psig (205 kPa) maximum
Air Connections	1/8 in FNPT
Effective Area	50 sq. in. (323 cm²)
Outputs	
MK-6811	1" (25 mm) nominal stroke
MK-6911	13/4" (45 mm) nominal stroke
Environment	
Temperature Limits	Shipping / storage: $-40 \ldots 220^{\circ} \mathrm{F}\left(-40 \ldots 104^{\circ} \mathrm{C}\right)$ ambient. Operating: $-20^{\circ} \mathrm{F} . .220^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C} \ldots 104^{\circ} \mathrm{C}\right)$. Maximum allowable ambient: $220^{\circ} \mathrm{F}\left(104^{\circ} \mathrm{C}\right)$ at maximum valve fluid temperature of $281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$. Minimum allowable valve fluid temperature: $20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$.
Positive Positioner	AK-42309-500 recommended for 5" valve, required for 6" valve, order separately. Supplied as standard on VK4 factory valve assemblies.

MORE INFO
Scan the QR code or visit the link below for more information.

Visit:
http://goo.gl/60aOs6

Application
MK-8800 series actuators are used to control $21 / 2^{\prime \prime} \ldots 4$ " VB-9000 series valves. MK8900 series actuators are used to control 5" and 6" VB-9000 series valves.

MK-88/8900 Actuator Specifications				
Effective Area	100 sq . in. $\left(645 \mathrm{~cm}^{2}\right)$			
Construction	Housing: Die cast aluminum. Diaphragms: Replaceable beaded molded neoprene.			
Stroke	See table below.			
Spring	Retracts actuator shaft and raises valve stem on loss of air			
pressure.		$	$	See table below.
:---:	:---:			

Optional Accessories

Linkage	AV-496
AK-52309-500	Positive positioner with linkage
Tool-95	Pneumatic calibration tool kit

Specifications

Part Number	Specifications						
	Nominal Spring Range ${ }^{\text {a }}$		Nominal Stroke		Dimensions		For Use With Valve Bodies
	psig	kPa	in.	mm	in.	mm	
MK-8811	5-10	34-69	1	25.4	$113 / 4$ high x $101 / 2$ wide x $101 / 2$ deep	298 high $\times 267$ wide x 267 deep	$\begin{aligned} & \text { VB-9313 } \\ & 21 / 2-4^{\prime \prime} \end{aligned}$
MK-8911			2	50.8	$\begin{aligned} & 123 / 4 \text { high } \mathrm{x} \\ & 101 / 2 \text { wide } \mathrm{x} \\ & 101 / 2 \text { deep } \end{aligned}$	324 high $\times 267$ wide x 267 deep	$\begin{gathered} \text { VB-9313 } \\ 5 \& 6^{\prime \prime} \end{gathered}$

[^9]
7. VB-8/9000 Series Actuators and Linkages

Pneumatic Positive Positioning Relay for VB-7/8/9xxx

MORE INFO
Scan the QR code or visit the link below for more information.

Visit:
http://goo.gl/LJCLEb

Positive Positioning Relay

Positive positioner pneumatic relay is used to accurately position an actuator stroke with respect to signal pressure from the controller. It can also be used to change the effective spring range of an actuator and increase the capacity of a controller.

Features

For accurate positioning of valve and damper actuators, this positioner utilizes a pilot-operated, relay-type position-sensing mechanism, much more sensitive to actuator position changes than some competitive"force-balance" positioners.

Model Number	Description
AK-42309-500	Positive Positioning Relay with Mounting Linkage.

Note: This model cannot be used with M556, M572, M573, M574, and MK-12000 Series actuators. Use N800-0555 positioner with M556, M573, and M574.

Specifications	
Action	Direct (increase in output pressure to actuator with an increase in pilot pressure from controller).
Pilot input	0 to main air pressure, psig.
Output	0 to main air pressure, psig.
Construction	
Housing	Polysulfone
Diaphragm	Neoprene
Start point	Adjustable 1...12 psig (7... 83 kPa).
Span	Adjustable $2 \ldots . .13 \mathrm{psi}(14 \ldots 90 \mathrm{kPa})$; factory set: 5 psig .
Stroke	Adjustable 2... 13 psi (14 to 90 kPa); factory set: 5 psig with feedback spring for $7 / 16$ to 5 " stroke.
Supply air pressure	Clean, oil free, dry air required (refer to EN-123).
Maximum	$30 \mathrm{psig}(207 \mathrm{kPa})$.
Nominal supply	$15 . .20 \mathrm{psig}(103 \ldots 138 \mathrm{kPa})$
Environment	
Ambient temperature limits	Shipping: - $40 \ldots 160^{\circ} \mathrm{F}\left(-40 \ldots 71^{\circ} \mathrm{C}\right)$. Operating: $32 \ldots 140^{\circ} \mathrm{F}\left(0 \ldots 60^{\circ} \mathrm{C}\right)$.
Humidity	5...95\% R.H., non-condensing.
Locations	NEMA Type 1 (IP10).
Air connections	
"M" and "B"	Barbed for 1/4" O.D. plastic tubing.
"P"	Dual-contoured for 1/4" O.D. and 5/32" O.D. tubing.
Air consumption (air compressor sizing)	$19 \mathrm{scim}(5.2 \mathrm{~mL} / \mathrm{s})$ at $20 \mathrm{psig}(138 \mathrm{kPa})$ supply.
Air capacity for sizing air mains	$20 \mathrm{scim}(5.5 \mathrm{~mL} / \mathrm{s})$.
Flow capacity	860 scim ($235 \mathrm{~mL} / \mathrm{s}$) at 20 psig (138 kPa) supply.
Mounting linkage	All necessary linkage provided to assemble AK-42309-500 to the following actuator series; MK-6600, MK-6800, MK-6900, MK-8800 and MK-8900.
Dimensions	$21 / 2 \mathrm{H} \times 41 / 2 \mathrm{~W} \times 3 \mathrm{D}$ " ($64 \times 114 \times 76 \mathrm{~mm}$).

Rack \& Pinion Linkages AV-607/609-1

Application

The AV-607-1 and AV-609-1 linkages are designed to link single or dual Schneider Electric SmartX spring return and non-spring return actuators to $1 \frac{1}{2} 2^{\prime \prime} \ldots 6^{\prime \prime}$ VB-9313 and $1^{1 / 2 \prime} \ldots 6^{\prime \prime}$ VB-8xx3 globe valves.

Features

- Allows mounting of single or dual actuators Schneider Electric SmartX actuators
- AV-607-1 is compatible with Schneider Electric (Siebe, Barber-Colman, INVENSYS) $2^{11 / 2 "} \ldots 5^{\prime \prime}$ VB$8 x \times 3,2^{1 / 2} 2^{\prime \prime} . .4^{\prime \prime}$ VB-9313 and discontinued 2"...4" VB-9xxx valves and Schneider Electric SmartX actuators ${ }^{2}$
- AV-609-1 is compatible with Schneider Electric (Siebe, Barber-Colman, INVENSYS) 6" VB-8xx3, 5"...6" VB-9313 and 5" and 6" VB-92xx valves and Schneider Electric SmartX actuators ${ }^{2}$
- Maintenance-free construction
- Corrosion protected heavy-duty steel rack-and-pinion construction and metal housing
- Precision rack self aligns with the valve stem

2 - Check the appropriate valve selection guide for close-offs for your application. AV-607-1 and AV-609-1
replace AV-607 and AV-609 respectively

Applicable Literature

- EN-205 Water System Guidelines, F-26080
- AV-608 Linkage Adapter Kit Installation Instructions, F-27253
- AV-607-1, 609-1 SmartX Actuator Linkages for $21 / 2^{\prime \prime}$ to 6 " Globe Valves
- MA40-704x, MA4x-707x, MA4x-715x SmartX Series Spring Return Two-Position Actuators InstalIation Instructions, F-26642
- MA40-717x SmartX Series Spring Return Two-Position Actuators Installation Instructions, F-26742
- MF4x-7xx3 SmartX Series Spring Return Floating Actuator Installation Instructions, F-26644
- MF40-7173 SmartX Series Spring Return Floating Actuator Installation Instructions, F-26749
- MF41-6153,/MS41-6153 Series Non-Spring Return Rotary Electronic Damper Actuator Installation Instructions, F-27215
- MS4x-7xx3 SmartX Series Spring Return Proportional Actuator Installation Instructions, F-26645
- MS40-717x SmartX Series Spring Return Proportional Actuator Installation Instructions, F-26748
- Vx-7000 Series and Vx-9000 Series Mx4x-6xxx and Mx4x-7000 Series Linked Globe Valve As-

AV-609-1 semblies with SmartX Actuators Selection Guide, F-26752

- VB-8xx3 Series Balanced Plug Valve Selection Guide, F-27199

Note: Do not install a $300 \mathrm{Ib}-\mathrm{in}$ M×41-634-x actuator on the AV-607-1 linkage as equipment damage may occur.

Linkage Kits and Actuator/Linkage Assemblies

Application	Actuator	Linkage Kit ${ }^{\text {a }}$
2½"...5" 2-Way and 3-Way	MK-6811 ${ }^{\text {b }}$	AV-497 (VB-8000 only) AV-495 (VB-9313 up to 4" only)
6" 2-Way and 3-Way	MK-6911 ${ }^{\text {b }}$	AV-497 (VB-8000 only)
2½"...4" 3-Way	MK-8811	AV-496 (VB-9313 only)
5"...6" 3-Way	MK-8911	AV-496 (VB-9313 only)
2½"...5" 2-Way and 3-Way (1" nominal stroke)	MA41-7150,51,53, MA40-7170,71,73, MF41-6343a, MF41-7153, MF40-7173, MS41-6340a ,MS41-6343a, MS41-7153, MS40-7170,71,73	AV-607-1 ${ }^{\text {c }}$
6" 2-Way and 3-Way ($13 / 4^{\prime \prime}$ nominal stroke)		AV-609-1 ${ }^{\text {d }}$
$\begin{gathered} 21 / 2 " . .6 " \\ 2-W a y \text { and } 3 \text {-Way } \\ \text { (1" nominal stroke) } \end{gathered}$	M1500A	AV-822

a - Mx61-720x Actuators require no separate linkage. Mx41-634x is not compatible with AV-607-1. The AV-609-1 linkage can be used with the Mx41-634x actuator on $2^{1 / 2} \ldots \ldots 5^{\prime \prime}$ VB-8000 valves or $2^{1 / 2} 2^{\prime \prime} \ldots 4^{4}$ VB-9313 valves, but the valve will stroke over a shorter portion of the control input signal.
b - AK-42309-500 (order separately) optional for $2 \frac{1}{2} 2^{\prime \prime} \ldots 5^{\prime \prime}$ valve, required for $6^{\prime \prime}$ valve. VK4 valve assemblies include positive positioner.
c $-2 \frac{1}{2} 2^{\prime \prime} \ldots 5^{\prime \prime}$ VB-8000 valves or $2^{1} / 2^{\prime \prime} \ldots 4^{\prime \prime}$ VB- 9313 valves.
d - 6 " VB-8000 valves or 5 "...6" VB-9313 valves.

Ecosf truxure-

EcoStruxure ${ }^{\text {TM }}$
Triconex ${ }^{\circledR}$
Software applications and tools

VBBNBS and VB-2000 Series Ball Valve Assemblies

Ball Valve Assemblies

8. VBB/VBS and VB-2000 Series Ball Valve Assemblies

Overview VBB/VBS Valves
 with M2/M3 Actuators

Application

The VBB and VBS Series valves with SmartX Actuators are 2-Way or 3-Way, 1/2" or 3/4", characterized ball valves. The M3 and M2 SmartX Actuators are direct coupled to the VBB/VBS Series valves and accept two-position, floating or proportional control signals from a DDC system, controller, or thermostat for control of hot or chilled water, or solutions of up to 60% glycol. Typical applications include VAV reheat, fan coil units, hot and chilled water coils in air handling units, heat pumps and unit ventilators.

Features

- Easy product selection - all actuators fit all valve bodies.
- Fast, easy actuator installation - no linkage or tools required.
- Flow characterizing insert provides equal percentage flow characteristic for stable, accurate floating and proportional control.
- ANSI IV seat leakage (0.01\%) for both 2-Way and 3-Way valves (A and B port).
- Brass and stainless steel trim models.
- Cvs from 0.3... 10.
- Normally open, normally closed, and non-spring return assemblies available.
- Two-position, Floating or Proportional (0...5 Vdc, 0... 10 Vdc , $5 \ldots 10 \mathrm{Vdc}$, or $4 \ldots 20 \mathrm{~mA} \mathrm{dc}$).
- Proportional actuator is direct or reverse acting.
- RoHS Compliant (VBS Assemblies).
- Reach Compliant.

Applicable Literature

- VBB and VBS Series Two-position Spring-Return Ball Valves Installation Instructions, F-27392.
- VBB and VBS Series Floating Spring Return and Non-spring Return Ball Valves Installation Instructions, F-27393.
- VBB and VBS Series Proportional Spring Return and Nonspring Return Ball Valves Installation Instructions, F-27394.
- VBB and VBS Series Brochure, F-27681.
- EN-205 Water System Guidelines, F-26080.
- EN-206 Guidelines for Powering Multiple Actuators, F-26363.

Specify Nine Part Number Fields to determine the Valve Actuator Assembly Part Number

Ordering VBB/VBS Ball Valve Assemblies

8. VBB/VBS and VB-2000 Series Ball Valve Assemblies

Specifications

Actuator

Voltage	24 Vac for floating and proportional 100... 277 Vac for two position multi-voltage types
Power Requirements	See Table-1, Table-2, and Table-3.
Control Signal	2-Position, Floating, or Proportional; half wave rectified power supply
Timing, Full Open to Full Close	See Table-1, Table-2 and Table-3.
Manual Operating Lever / Position Indicator	Standard on all models.
Auxiliary End Switch (optional)	SPST $24 \mathrm{Vac} / \mathrm{Vdc}$, 101 mA ... 5 A max.
Materials	Thermoplastic base and cover. Approved for use in air plenums.
Shipping \& Storage Temperature Limit	$-40 \ldots 169{ }^{\circ} \mathrm{F}\left(-40 \ldots 76^{\circ} \mathrm{C}\right)$.
	Floating $\quad 32 \ldots 140^{\circ} \mathrm{F}\left(0 \ldots 60^{\circ} \mathrm{C}\right)$
Operating	Proportional $32 \ldots 140^{\circ} \mathrm{F}\left(0 \ldots 60^{\circ} \mathrm{C}\right)$
Temperature Limit	Two-Position $32 \ldots 169{ }^{\circ} \mathrm{F}\left(0 \ldots 76{ }^{\circ} \mathrm{C}\right)$
p.	Humidity $5 . .95 \%$ relative humidity, non-condensing.
Locations	NEMA 2, IEC IP31. Indoor Use Only.
Valve	
Service ${ }^{\text {a }}$	Hot and chilled water, up...60\% glycol.
System Static Press Limit	$600 \mathrm{psi}(4137 \mathrm{kPa})$.
Fluid Temperature Li	20...250 ${ }^{\circ} \mathrm{F}\left(-7 \ldots 121^{\circ} \mathrm{C}\right)$.
Cv (Kv)	See Tables 4 through 7.
Close-off Pressure ${ }^{\text {b }}$	130 psi 2-Way; 70 psi 3-Way
Differential Pressure	30 psi normal operation 20 psi quiet operation.
Seat Material	PTFE
Characterized Insert	Glass-filled PEEK
Seat Leakage	ANSI class IV (0.01\%) at both A and B ports with pressure at inlet.
End Connections	NPT threaded (VBxxNxx)
Rangeability	Greater than 300:1.
Body Material	Forged brass.
Stem Material	Stainless steel anti-blow out stem with dual Viton ${ }^{\text {TM }}$ o-rings.
Ball Material	Chrome plated brass (VBB series) or stainless steel (VBS series).

a. Not rated for steam service.
b. Close-off is defined as the maximum allowable pressure drop to which a valve may be subjected while fully closed.

Agency Listings

M2 SmartX actuators M3 SmartX actuators:	North America: c-UL-us LISTED per UL 873 and C22.2 No. 24 . European Union: LVD 2006/95/EC and EMC 2004/108/EC directives compliant. North America: c-UL-us LISTED per UL 60730-1 \& -2-14 and CSA E60730-1 \& -2-14. FCC part15 classB \& ICES-003 classB emissions compliant. European Union: LVD 2014/35/EU and EMC 2014/30/EU directives, per EN 60730-1 \& -2-14. EN 61000-6-2 immunity \& EN 61000-6-3 emissions compliant.
Australia	This product meets requirements to bear the RCM Mark.
Plenum Rating	Actuators with terminal block or plenum cable leads are plenum rated.
CRN Number	CRN OC0970.9012345678NTY.
RoHS Compliant	VBS valves and M3/M2 actuators comply with European Directive RoHS 2 Directive 2011/65/EU. Please consult factory for part number specific compliance.
REACh Compliant	Compliant as defined in Article 33 of the REACh Regulation (EC)1907/2006.
Application Schematics Typical applications	
For simplicity, shown. Mixing applications	ancing valves and control devices are not

M2/M3 and Valve Selection and Flow Direction

Ball Valve Assembly Selection Procedure

1. Select the actuator. When selecting a ball valve assembly, you must know the control signal type and voltage to first select an actuator. Consult the following tables: Table-1 covers two-position actuator specifications and model numbers, Table-2 covers floating actuator specifications and model numbers and Table-3 covers proportional actuator specifications and model numbers.
2. Select the valve body. The valve body model number is selected based on the line size ($1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$), ball material trim, and flow coefficient (Cv/Kv) required. Consult Table-4 and Table-5 for brass trim valve body specifications and model numbers and Table-6 and Table-7 for stainless steel trim valve body specifications and model numbers. See "Flow Coefficient Selection" for information in determining the flow coefficient.

Other considerations

1. General service conditions: Make sure the actuator is suitable for the anticipated ambient conditions and that the valve body is compatible with the system fluid temperature and pressure requirements.
2. Close-off pressure: Confirm that the VBB/VBS ball valve's close off rating is suitable for the valve control application.
3. Space requirements: If mounting space limitations are a consideration, check the actuator/valve assembly dimensions.
4. Pipe reducers: Refer to the tables herein (F-27395) for estimating effective Cvs when using pipe reducers.
5. Ordering information. You may order the actuator and valve body separately or as a factory assembly. To order a complete valve and actuator assembly, specify the valve body part number and the actuator part number separated by a "+." Example: To order actuator valve body VBB2N15 and M312A00 as a factory valve/actuator assembly, specify VBB2N15+M312A00.

Flow Direction

A notch cut into the stem indicator at the tip of the valve stem is an external indicator of where the closed portion of the ball sits internally. Check the notch position prior to assembling the actuator to verify the ball is orientated in the correct plane.

8. VBB/VBS and VB-2000 Series Ball Valve Assemblies
 M2/M3 Two-Position, Floating and Proportional Actuators

Table-1: Two-Position Actuators

Part Number	Control Signal	Power Loss Action (Valve Normal Position)	VA / Voltage	Leads	Stroke Timing ${ }^{9}$	Spring Return Timing ${ }^{9}$	End Switch
M210A00	TwoPosition	Normally Open	$\begin{aligned} & 3.5 / 1.8 \text { at } 24 \mathrm{Vac} / 24 \\ & \mathrm{Vdc} \end{aligned}$	Removeable Terminal Block ${ }^{\text {b }}$	50 sec	35 sec .	
M210A01				10 ft . (3.05 m) Plenum			
M210A11							SPST
M210A02				18 in. (45 cm) Appliance			
M210A12				Wire			SPST
M210M02			6.0/6.0 at 100... 277	18 in. (45 cm) Appliance			
M210M12			Vac, $50 / 60 \mathrm{~Hz}$				SPST
M220A00		Normally Closed	$\begin{aligned} & 3.5 / 1.8 \text { at } 24 \mathrm{Vac} / 24 \\ & \mathrm{Vdc} \end{aligned}$	Removeable Terminal Block ${ }^{\text {b }}$			
M220A01				$10 \mathrm{ft} .(3.05 \mathrm{~m})$ Plenum			
M220A11				Cable ${ }^{\text {c }}$			SPST
M220A02				18 in. (45 cm $\underset{\text { Wire }}{ }$ Appliance			
M220A12							SPST
M220M02			$\begin{gathered} 6.0 / 6.0 \text { at } 100 \ldots 277 \\ \mathrm{Vac}, 50 / 60 \mathrm{~Hz} \end{gathered}$				
M220M12							SPST

Table-2 Floating Actuators

Part Number	Control Signal	Power Loss Action (Valve Normal Position)	VA @ 24 Vac $50 / 60 \mathrm{~Hz}$	Leads	Stroke Time, sec. 50/60 Hz	Time-out Delay, sec. $50 / 60 \mathrm{~Hz}$
M332A00	Floating	(Non-Spring Return)	2.3/2.4	Terminal Block ${ }^{\text {b }}$	159/135	181 Sec
M332A01				10 ft . (3.05 m) Plenum Cable ${ }^{\text {c }}$		
M312A00			3.2/3.3 ${ }^{\text {d }}$	Terminal Block ${ }^{\text {b }}$		
M312A01		Normaly Open		10 ft . (3.05 m) Plenum Cable ${ }^{\text {c }}$		
M322A00		Normally Closed		Terminal Block ${ }^{\text {b }}$		
M322A01				$10 \mathrm{ft} .(3.05 \mathrm{~m})$ Plenum Cable ${ }^{\text {c }}$		

Table-3 Proportional Actuators

Part Number	Control Signal	Power Loss Action (Valve Normal Position)	VA @ 24 Vac $50 / 60 \mathrm{~Hz}$	Leads	Stroke Time, sec. 50/60 Hz	Time-out Delay, sec. $50 / 60 \mathrm{~Hz}$
M333A00	Proportional ${ }^{\text {a }}$ (Vdc : 0...5, 0...10, 2...10, 5...10, 4... 20 mA dc ${ }^{e}$)	(Non-Spring Return)	2.7/2.8	Terminal Block ${ }^{\text {b }}$	159/135	200/166
M333A01				10 ft . (3.05 m) Plenum Cable ${ }^{\text {c }}$		145 Sec
M313A00			2.7/2.8 ${ }^{\text {d }}$	Terminal Block ${ }^{\text {b }}$		
M313A01		俍		10 ft . (3.05 m) Plenum Cable ${ }^{\text {c }}$		
M323A00		Normally Closed		Terminal Block ${ }^{\text {b }}$		
M323A01				10 ft . (3.05 m) Plenum Cable ${ }^{\text {c }}$		

a. Default configured for $0 \ldots 10 \mathrm{Vdc}$ input signal, direct acting control.
b. All terminal block and appliance wire units accept a $1 / 2$ " conduit connector fitting (.875" diameter).
c. All plenum cable units include an integral $3 / 8^{\prime \prime}$ conduit connector fitting.
d. Size transformer for 10 VA per actuator.
e. For $4 \ldots 20 \mathrm{~mA}$ control, a separate isolated transformer must be used with each valve.
g. Nominal.

8. VBB/VBS and VB-2000 Series Ball Valve Assemblies

Brass Trim Valves

Table-4. 2-Way Brass Trim Valve Bodies
End Connection: NPT

Size	Part Number	Cv (Kv)
	VBB2N00	$0.3(0.3)$
	VBB2N01	$0.7(0.6)$
	VBB2N02	$1.2(1.0)$
	VBB2N03	$2.1(1.8)$
	VBB2N04	$3.5(3.0)$
	VBB2N05	$4.7(4.1)$
	VBB2N06	$7.7(6.7)$
	VBB2N07	$10(8.7)$
$3 / 4 "$	VBB2N10	$0.3(0.3)$
	VBB2N11	$0.7(0.6)$
	VBB2N12	$1.2(1.0)$
	VBB2N13	$2.1(1.8)$
	VBB2N14	$3.5(3.0)$
	VBB2N15	$4.7(4.1)$
	VBB2N16	$7.7(6.7)$
	VBB2N17 ${ }^{\text {b }}$	$10(8.7)$

b. Full Port Model without characterized disc.

Table-5. 3-Way Brass Trim Valve Bodies
End Connection: NPT

Size	Part Number	Cv (Kv) A Port	Cv (Kv) B Port
	VBB3N00	$0.3(0.3)$	$0.3(0.3)$
	VBB3N01	$0.6(0.5)$	$0.8(0.7)$
	VBB3N02	$1.0(.85)$	$0.8(0.7)$
	VBB3N03	$2.0(1.7)$	$1.5(1.3)$
	VBB3N04	$3.0(2.6)$	$1.5(1.3)$
	VBB3N05	$4.5(3.9)$	$2.7(2.3)$
	VBB3N06	$7.3(6.3)$	$4.1(3.5)$
	VBB3N07 ${ }^{\text {b }}$	$10.0(8.7)$	$4.8(4.1)$
	VBB3N10	$0.3(0.3)$	$0.3(0.3)$
	VBB3N11	$0.6(0.5)$	$0.8(0.7)$
	VBB3N12	$1.0(.85)$	$0.8(0.7)$
	VBB3N13	$2.0(1.7)$	$1.5(1.3)$
	VBB3N14	$3.0(2.6)$	$1.5(1.3)$
	VBB3N15	$4.5(3.9)$	$2.7(2.3)$
	VBB3N16	$7.3(6.3)$	$4.1(3.5)$
	VBB3N17 ${ }^{\text {b }}$	$10.0(8.7)$	$4.8(4.1)$

b. Full Port Model without characterized disc.

2 and 3-Way Brass and Stainless Steel Trim Valves

Stainless Steel Trim Valves

Table-6. 2-Way Stainless Steel Trim Valve Bodies
End Connection: NPT

Size	Part Number	$\mathrm{Cv}(\mathrm{Kv})$
	VBS2N00	$0.3(0.3)$
	VBS2N01	$0.7(0.6)$
	VBS2N02	$1.2(1.0)$
	VBS2N03	$2.1(1.8)$
	VBS2N04	$3.5(3.0)$
	VBS2N05	$4.7(4.1)$
	VBS2N06	$7.7(6.7)$
	VBS2N07	
	$10(8.7)$	
	VBS2N10	$0.3(0.3)$
	VBS2N11	$0.7(0.6)$
	VBS2N12	$1.2(1.0)$
	VBS2N13	$2.1(1.8)$
	VBS2N14	$3.5(3.0)$
	VBS2N15	$4.7(4.1)$
	VBS2N16	$7.7(6.7)$
	VBS2N17	

b. Full Port Model without characterized disc.

Table-7. 3-Way Stainless Steel Trim Valve Bodies End Connection: NPT

Size	Part Number	Cv (Kv) A Port	Cv (Kv) B Port
	VBS3N00	$0.3(0.3)$	$0.3(0.3)$
	VBS3N01	$0.6(0.5)$	$0.8(0.7)$
	VBS3N02	$1.0(.85)$	$0.8(0.7)$
	VBS3N03	$2.0(1.7)$	$1.5(1.3)$
	VBS3N04	$3.0(2.6)$	$1.5(1.3)$
	VBS3N05	$4.5(3.9)$	$2.7(2.3)$
	VBS3N06	$7.3(6.3)$	$4.1(3.5)$
	VBS3N07	$10.0(8.7)$	$4.8(4.1)$
	VBS3N10	$0.3(0.3)$	$0.3(0.3)$
	VBS3N11	$0.6(0.5)$	$0.8(0.7)$
	VBS3N12	$1.0(.85)$	$0.8(0.7)$
	VBS3N13	$2.0(1.7)$	$1.5(1.3)$
3BS3N14	$3.0(2.6)$	$1.5(1.3)$	
	VBS3		
	VBS3N15	$4.5(3.9)$	$2.7(2.3)$
	VBS3N16	$7.3(6.3)$	$4.1(3.5)$
	VBS3N17 ${ }^{\text {b }}$	$10.0(8.7)$	$4.8(4.1)$

b. Full Port Model without characterized disc.

Application Note for 2 and 3-Way Valves
VBB/VBS Series Ball Valves are Characterized Control Ball Valves designed so that flow through the A-port exhibits equal percentage flow, thus the A-port is the control port. In a 3-way valve, the B-port is the bypass port and flow through the B-port designed to be less than that of the A-port. In most applications, this reduced flow compensates for the pressure drop seen b. coil supplied by the A-port.

8. VBB/VBS and VB-2000 Series Ball Valve Assemblies

Product Description

The Schneider Electric VA, VF, and VS-2xx3-xxx-9-xx series Ball Valve Assemblies are complete actuator/valve assemblies that accept twoposition, floating, or proportional control signals from a DDC system or a thermostat, for control of hot or chilled water, or solutions of up to 50% glycol. They consist of direct-coupled SmartX spring return or non-spring return actuators mounted on 2-way ($1 / 2^{\prime \prime}$ to 3 ") and 3 -way ($1 / 2$ " to 2 ") ball valve bodies. Typical applications include reheat on VAV boxes, fan coil units, hot and chilled water coils in air handling units, and unit ventilators.

> VB-2253-500-9-xx Body/Linkage Assembly with 2-Way Ball Valve

Ball valve body/linkage assemblies allow field mounting of SmartX actuators.

Applicable Literature

For installation details and considerations,
refer to the full Selection Guide F-27086, Ball
Valve Assemblies with SmartX Actuators

Features \& Benefits, and Ball Valve Assembly Selection

Feature	Benefit
Close-offs of 40 to 130 psi.	Accommodates most close-off requirements.
Available in full range of line sizes, $1 / 2^{\prime \prime}$ to $3^{\prime \prime}$ for 2-way valves and $1 / 2^{\prime \prime}$ to $2^{\prime \prime}$ for 3-way valves.	Satisfies a wide range of applications.
Cvs from 0.33 to 266.	Permits optimal valve sizing, minimizing the need for pipe reducers.
Flow characterizing insert, made of glass-filled Noryl $^{\text {TM }}$.	Provides equal percentage flow characteristic so that the heat output of the coil is linear with respect to valve position.
Available in both spring return and non-spring return models.	Allows power loss mode requirement to be met for any given application.
Utilizes SmartX Actuators with two-position, floating, and proportional control.	Models to fit a wide range of applications.
All VB-2000 models equipped with pigtail leads.	Eases installation. Reduced electrician costs.
Low-friction seals and o-rings.	Allows the use of lower-torque actuators, reducing cost.
Valve body made of forged brass ASTM B283-06.	Rated for static pressure of 360 psi at fluid temperatures of 20 to $250{ }^{\circ} \mathrm{F}(-7$ to 121 ${ }^{\circ} \mathrm{C}$).
ANSI Class IV (0.01\% of CV) shutoff with 2-way valves.	Allows accurate control, saves energy.
Choices of spring return direction.	Provides Normally Closed or Normally Open spring return.
Thermally isolated mounting plate.	Protects the actuator from excess cold or heat from chilled or hot water passing through the valve. Discourages condensation.
Ball Valve Body/Linkage Assemblies are available separately. They include anti-rotation clips for SmartX Actuators.	Increases flexibility and minimizes inventory.

Ball Valve Assembly Selection Procedure

When selecting a ball valve assembly, you must determine the applicable codes for the control signal type, valve body configuration, end connection, port size, and actuator. Select a ball valve assembly part number as follows:

1. Control Signal Type, Valve Body Configuration, and End Connection Refer to Ball Valve Assemblies and select the appropriate codes for these part number fields.
2. Valve Size (Flow Coefficient)

If the required flow coefficient (Cv) has not yet been determined, do so as follows:
a. Refer to Sizing and Selection to calculate the required Cv.
b. Select the nearest available Cv and corresponding valve body port code.
3. Actuator

Select the appropriate actuator and code according to Ball Valve Assemblies, based on the control signal type, required valve normal position, and voltage requirements. For detailed actuator information, refer to the applicable actuator specifications.
NOTE: If an actuator with auxiliary switch(es) is required, you may field-assemble a ball valve assembly using a ball valve body/linkage assembly (VB-2513-500-9-xx). For information on switch-equipped actuators, refer to actuator specifications.
4. Close-off Pressure

Confirm that the selected actuator and valve body combination provides sufficient close-off pressure. If no close-off pressure is shown, the valve body/actuator combination is not valid.
5. Available Space

Check the appropriate dimensional figure (Figure 1 through Figure 6) and its accompanying data table for dimension details.

Specify Five Part Number Fields to determine the Valve Actuator Assembly Part Number

Ordering SmartX $5 x x$ and $8 x x$ Ball Valve Assemblies

SmartX 5xx Actuators

Material $1=$ Nickel/Chromium Plated Brass $5=$ Stainless Steel $/ 3$

1 Normal position for 3-way spring return ball valve assemblies refers to A to $A B$ ports.
3 Stainless steel ball is available only on 2-way versions.
4 2-way assemblies are only available in stainless steel; 3 -way only available in nickel/chromium plated

brass. Note: Not all model configurations are available as factory assemblies. You can purchase the the actuator
and a VB-22x3-500-9-xx valve body and linkage separately for field assembly.
SmartX 8xx Actuators

Control
Signal Type
$=$ Two Position
$\mathrm{F}=$
$\mathrm{S}=$ Floating
$\mathrm{S}=$ Proportional
\quadLinkage (less actuator)

| Configuration
 $2=2$-Way
 $3=3$-Way Mixing |
| :--- | :--- |

Connection

3 = Threaded NPT
1 Normal position for 3-way spring return ball valve assemblies refers to A to $A B$ ports
3 Stainless steel ball is available only on 2-way versions.
4 2-way assemblies are only available in stainless steel; 3-way only available in nickel/chromium plated brass.

8. VBB/VBS and VB-2000 Series

 Ball Valve Assemblies
Port Codes

2-Way Ball Valve Assemblies with Sizes, Port Codes, and Cvs.

Size in.	2-Way		
	Port Code	$\mathrm{Cv}^{\text {a }}$	Kvs ${ }^{\text {a }}$
1/2	01	0.38	0.33
	02	0.68	0.59
	03	1.3	1.1
	04	2.6	2.2
	05	4.7	4.1
	06	8.0	6.9
	07	$11.7{ }^{\text {b }}$	10.1
$3 / 4$	11	0.31	0.27
	12	0.63	0.54
	13	1.2	1.0
	14	2.5	2.2
	15	4.3	3.7
	16	10.1	8.7
	17	$14.7{ }^{\text {b }}$	12.7
	18	$28.6^{\text {b }}$	24.7
1	21	4.4	3.8
	22	9.0	7.8
	23	15.3	13.2
	24	26.1	22.6
	25	$28.4{ }^{\text {b }}$	24.6
	26	$43.9{ }^{\text {b }}$	38.0
	27	$54.2{ }^{\text {b }}$	46.9
$11 / 4$	41	4.4	3.8
	42	8.3	7.2
	43	14.9	12.9
	44	36.5	31.6
	45	$41.1{ }^{\text {b }}$	35.6
	46	$102.3{ }^{\text {b }}$	88.5
$11 / 2$	51	22.8	19.7
	52	41.3	35.7
	53	$73.9{ }^{\text {b }}$	63.9
	54	$171.7{ }^{\text {b }}$	148.5
2	61	41.7	36.1
	63	71.1	61.5
	65	$108{ }^{\text {b }}$	93.4
	66	210	181.7
	67	$266^{\text {b }}$	230.1
21/2	71	45	38.9
	72	55	47.6
	73	72.3	62.5
	74	101	87.4
	75	162	140.1
	76	$202{ }^{\text {b }}$	174.7
3	82	63	54.5
	85	$145{ }^{\text {b }}$	125.4

a - $\mathrm{Cv}=\frac{\text { gpm }}{\sqrt{\Delta \mathrm{P}}}$ (where DP is measured in psi) \quad kvs $=\frac{\mathrm{Cv}}{1.156}$
kvs $=\frac{\mathrm{m}^{3} / \mathrm{h}}{\sqrt{\mathrm{AP}}}($ where DP is measured in bar; $1 \mathrm{bar}=100 \mathrm{kPa})$
b- Denotes a full port valve, without the characterized insert.

VB-2000 Series 2 and 3-Way
Sizes, Port Codes, Cv/Kvs

3-Way Ball Valve Assemblies - Sizes, Port
Codes, and Cvs

Size in.	3-Way		
	Port Code	A Port Cvab	Kvs ${ }^{\text {a }}$
1/2	01	0.33	0.28
	02	0.59	0.51
	03	1	0.86
	04	2.4	2.1
	05	4.3	3.7
	06	$8.0^{\text {c }}$	6.9
$3 / 4$	11	0.40	0.35
	12	0.66	0.57
	13	1.3	1.1
	14	2.4	2.1
	15	3.8	3.3
	16	$11^{\text {c }}$	9.5
1	21	0.40	0.35
	22	0.65	0.56
	23	1.3	1.1
	24	2.3	2.0
	25	3.5	3.0
	26	4.5	3.9
	27	8.6	7.4
	28	10	8.6
	29	14.9	12.9
	30	$22.3{ }^{\text {c }}$	19.3
	31	$30.8{ }^{\text {c }}$	26.6
$11 / 4$	41	4.1	3.5
	43	8.7	7.5
	44	12.7	11.0
	45	$19.4{ }^{\text {c }}$	16.8
	46	$34.1^{\text {c }}$	29.5
$11 / 2$	51	4	3.5
	52	8.3	7.2
	53	13.4	11.6
	54	23.5	20.3
	55	$32^{\text {c }}$	27.7
	56	$61.1^{\text {c }}$	52.8
2	61	23.9	20.7
	62	38.2	33.0
	63	$56.7^{\text {c }}$	49.0
	64	$108.5^{\text {c }}$	93.8

a. $\mathrm{Cv}=\frac{\mathrm{gpm}}{\sqrt{\Delta \mathrm{P}}}$ (where DP is measured in psi) \quad kvs $=\frac{\mathrm{Cv}}{1.156}$
kvs $=\frac{\mathrm{m}^{3} / \mathrm{h}}{\sqrt{\Delta \mathrm{P}}}($ where DP is measured in bar; $1 \mathrm{bar}=100 \mathrm{kPa})$
b-B port Cv is 80% of A port Cv.
c - Denotes a full port valve, without the characterized insert.

VB-2000 Series 2 and 3-Way Ball Valve Specifications

Ball Valve Specifications

Valve Assembly Series		2-Way		3-Way Mixing	
Ball Valve Assemblies using SmartX Actuators				Non-Spring Return Vx-2313-505-9-P Vx-2313-506-9-P Spring Return Vx-2313-5xx-9-P	
			Spring Return VA-22x3-81x-9-P $\mathrm{Vx}-22 \times 3-82 \mathrm{x}-9-\mathrm{P}$ $V x-22 \times 3-83 x-9-P$		Spring Return VA-2313-81x-9-P Vx-2313-82x-9-P $V x-2313-83 x-9-P$
Applications		Chilled or Hot Water, up to 50\% Glycol Solution			
Type of End Fitting		NPT Screwed			
Size		1/2" through 3"		1/2" through 2"	
Valve Assembly Series		Vx-22x3-xxx-9-P		Vx-2313-xxx-9-P	
Flow Type		Equal Percentage			
Material	Body	Forged Brass (ASTM B283-06)			
	Ball	$\begin{gathered} 1 \text { = Nickel/Chromium-Plated Brass } \\ 5=\text { Stainless Steel } \end{gathered}$		Nickel/Chromium-Plated Brass	
	Characterizing Insert	Glass-filled Noryl			
	Stem	Stainless Steel			
	Ball Seals	Reinforced Teflon® Seals with EPDM O-Rings			
	Stem Seals	EPDM O-Rings			
	Mounting Plate	Glass-filled Polymer			
Maximum Static Pressure		360 psig (25 bar) at $250{ }^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$			
Maximum Operating Differential Pressure		Same as close-off pressures shown in Table-4 or Table-6. Refer to Pg. 107, Cavitation Limitations on Valve Pressure Drop .			
Seat Leakage		ANSI Class IV (0.01\% of Cv)		ANSI Class IV (0.01% of CV), piped coil-side outlet to A only	
Fluid (water) Temp.	Minimum	$20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$			
	Maximum	$250{ }^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$			

8. VBB/VBS and VB-2000 Series

Ball Valve Assemblies

VB-2000 2-Way Ball Valve Assemblies with SmartX Actuators

a - For non-spring return, 2-way ball valve assemblies are shipped NO (normally open).
b - To find the corresponding flow coefficients for these port codes, refer to Pg. 144, VB-2000 Series Actuator Part Numbering
c - To determine a specific part number, identify the actuator's control signal type ("A," "F," or "S"), actuator code, and P code. Refer to Pg. 145, VB-2000 Series 2 and 3-Way Sizes, Port Codes, Cv/Kvs .

3-Way Mixing Assemblies Using SmartX Actuators

Note: Not all model configurations are available as factory assemblies. You can purchase the the actuator and a VB-2253-500-9-xx valve body and linkage separately for field assembly. All valve sizes - ANSI Class IV (0.01% of Cv) shut-off piped coil-side outlet to A.

[^10]8. VBB/VBS and VB-2000 Series

Ball Valve Assemblies

VB-2000 SR and NSR SmartX Actuator Specifications

Specifications

MF/MS41-6043/83 NSR SmartX Actuators

MF41-6083, MS41-6083
125
$44 \mathrm{lb}-\mathrm{in}$. ($5 \mathrm{~N}-\mathrm{m}$) for $\mathrm{M} \times 41-6043$; $88 \mathrm{lb}-\mathrm{in}$. (10 N-m) for Mx41-6083 Normal angle of rotation is 90°, limited to a maximum of 95°. Field adjustable to limit travel on either end of stroke
Position indicator Adjustable pointer is provided for position indication
Output shaft setscrew
Tightening torque $55 \ldots 60 \mathrm{lb}-\mathrm{in} .(6.3 \ldots 6.8 \mathrm{~N}-\mathrm{m})$
Environmental
Temperature Limits
Shipping and storage
$-40 \ldots 70^{\circ} \mathrm{C}\left(-40 \ldots 158^{\circ} \mathrm{F}\right)$ ambient
Operating
$-32 \ldots 55^{\circ} \mathrm{C}\left(-25 \ldots 130^{\circ} \mathrm{F}\right)$ ambient
NOTE: Check the valve operating temperature limit. The minimum valve media temperature limit is $-7^{\circ} \mathrm{C}\left(20^{\circ} \mathrm{F}\right)$
Humidity
5...95\% RH, non-condensing

Enclosure Rating IEC IP54 (NEMA Type 2)
Agency Listings (Actuator)
UL
UL-873, Underwriters Laboratories
cUL
European Community Canadian Standards C22.2 No. 24-93

EMC Directive (89/336/EEC) Emissions (EN50081-1) Immunity (EN50081-2)

Part Number	Power Input @ 50/60 Hz			
	Voltage	Running VA	Holding VA	Watts
MF41-6043 and MF41-6083	24 Vac $+20 /-$ 15%	2.3	-	2.0
MS41-6043 and MS41-6083	3.3	1.2	3.0	

Mx40-704x SR SmartX Actuators
Inputs
Control Signal
MA40-7043
ON/OFF SPST control contacts or Triacs (500 mA rated)
MS40-7043

MS40-7043 MP/MP5 MF40-7043	Proportional 6... 9 Vdc . Floating point control, 24 Vac
Power Requirements (See table)	All 24 Vac circuits are Class 2
Connections	
MA40-704x and MA40-704x-501	0.9 m (3 ft.) long, appliance cable For M20 Metric conduit, use AM-756 adaptor
MF40-7043 and MF40-7043-501, MS40-7043 and MS40-7043-501	$0.9 \mathrm{~m}(3 \mathrm{ft}$.$) long, plenum rated$ cable. For M20 Metric conduit, use AM-756 adaptor
Motor Type	
MA40-704x	Brush DC
MF40-7043, MS40-7043	Brushless DC

Outputs
Electrical
Auxiliary Switches: Available when actuators are ordered as separate units. Auxiliary switches are not offered with factory ball valve assemblies.
Mx40-7043-501 and MS40-7043-MP5 One auxiliary switch available. SPDT 6 A resistive @ 24 Vac, adjustable 0 to 95° (0 to 1 scale). Switch meets VDE requirements for 6 (1.5) A, 24 Vac
MA40-7040-501

Position Feedback Voltage

Control Mode One auxiliary switch available. SPDT 6 A resistive @ 250 Vac, adjustable 0 to 95° (0 to 1 scale). Switch meets VDE requirements for 6 (1.5) A, 250 Vac.
For 2... 10 Vdc proportional actuators, the feedback signal is the same voltage range as the input signal. The feedback signal can supply up to 0.5 mA to operate up to four additional slave actuators (proportional (MS) models only). Switch provided for selection of direct acting or reverse acting control mode on proportional models

8. VBB/VBS and VB-2000 Series Ball Valve Assemblies

Agency Listings (Actuator) UL

UL 873, Underwriters Laboratories (File \#9429 Category Temperature-Indicating and Regulating Equipment) cUL Canadian Standards C22.2 No. 24-93.

European Community
Australia

EMC Directive (89/336/EEC) Low Voltage Directive (72/23/EEC) This product meets requirements to bear the RSM according to the terms specified by the Communications Authority under the Radio communications Act 1992

* Not available as an assembly

Mx4D-7033/8033-xxx SmartX Actuators

Inputs
 Control Signal and Power Requirements (see table)

a. 4 to 20 mAdc with field-installed 500 W resistor.

Connections
Mx4D-703x-1x0 and Mx4D-803x
$1 \times 010 \mathrm{ft}$. (3.05 m) long, plenum cable $1 / 22^{\prime \prime}(13 \mathrm{~mm})$ conduit connector. For M20 Metric
conduit, use AM-756 adaptor
Motor Type Brush DC

Outputs: Electrical
Timing Approximate Timing in Sec. @ $70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)^{\text {a }}$
Part Number

Spring Return

	Powered	CCW $^{\text {b }}$	CW $^{\text {b }}$
MA4D-7033-100	56	26	-
MF4D-7033-100	85	21	-
MS4D-7033-100	85	21	-
MA4D-8033-100	56	-	26
MF4D-8033-100	85	-	21
MS4D-8033-1x0	85	-	21

a. Timing was measured with no load applied to actuator. b. CCW or CW as viewed from cover side of actuator. Position Feedback Voltage: For $0 . . .3 \mathrm{Vdc}, 0 \ldots 9 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}$, and $0 . .10 \mathrm{Vdc}$ proportional actuators, the feedback signal is the same voltage range as the input signal. The $4 \ldots .20 \mathrm{~mA}$ proportional actuators and floating actuators have a $2 \ldots 10 \mathrm{Vdc}$ feedback signal. The feedback signal can supply up to 0.5 mA to operate up to four additional
slave actuators.

Mechanical

Stroke
Manual override
Output torque rating
RA/DA Jumper (Proportional Models)

Position indicator
93° nominal
Allows positioning of valve shaft, using a manual crank $30 \mathrm{lb}-\mathrm{in}(3.4 \mathrm{~N}-\mathrm{m})$ Permits selection of reverse acting or direct acting control Visual indicator

VB-2000 SR and NSR SmartX Actuator Specifications

Part Number	Voltage$50 / 60 \mathrm{~Hz}$	Voltage Vdc	Running				Holding (Hz)	
			50 Hz		60 Hz		50	60
			VA	W	VA	W	W	W
MA40-7043	$\begin{gathered} 24 \mathrm{Vac} \pm \\ 20 \% \end{gathered}$	$\begin{gathered} 22 \ldots \\ 30 \end{gathered}$	4.4	2.9	4.4	2.9	0.8	0.8
MA40-7043-501								
MS40-7043			5.6	4.2	5.6	4.2	2.4	2.4
MS40-7043-501								
MF40-7043			5.9	4.4	5.9	4.4	2.9	2.9
MF40-7043-501								
MS40-7043-MP*			6.9	5.0	6.6	5.0	3.2	3.2
MS40-7043- MP5*								
MA40-7040*	120 Vac	-	6.4	3.8	4.3	3.4	1.6	1.2
MA40-7040-501*	$\pm 10 \%$							
MA40-7041	230 Vac		5.8	4.1	4.6	3.9	1.5	
MA40-7041-501								

Environmental
Temperature Limits
Shipping and storage $-40 \ldots 160^{\circ} \mathrm{F}\left(-40 \ldots 71^{\circ} \mathrm{C}\right)$ ambient Operating
$-22 \ldots 140^{\circ} \mathrm{F}\left(-30 \ldots 60^{\circ} \mathrm{C}\right)$ ambient NOTE: Check the valve operating temperature limit. The minimum valve media temperature limit is $20^{\circ} \mathrm{F}\left(6.7^{\circ} \mathrm{C}\right)$
Humidity 15 to 95% RH, non-condensing Enclosure Rating NEMA 1. NEMA 2, UL Type 2
(IEC IP54) with customer-supplied watertight conduit connectors Enclosure is air plenum rated
Agency Listings (Actuator)
UL
UL 873, Underwriters Laboratories File \#9429 Category TemperatureIndicating and Regulating Equipment Plenum rated
cUL
European Community
Canadian Standards C22.2 No. 24-93 EMC Directive (89/336/EEC)
Low Voltage Directive (72/23/EEC)
This product fits into Installation
Category (Overvoltage Category)
Il per EN 61010-1
Australia
This product meets requirements to bear the RCM mark according to the terms specified by the Communications Authority under the Radiocommunications Act 1992

Part Number for Mx4D-703x-xxx Mx4D-803x-xxx	Control Signal	Voltage	Actuator Power Input			
			Running			Holding
			50/60 Hz		DC Amps	$50 / 60 \mathrm{~Hz}$
			VA	W		W
MA4D-x033-100	2-position	$\begin{gathered} 24 \mathrm{Vac} \\ \pm 20 \% \end{gathered}$	5.1	3.6	0.14	1.3
MF4D-x033-100	Floating		6.8	4.2	0.15	1.9
MS4D-x033-100	2 to $10 \mathrm{Vdc}^{\text {a }}$ Proportional	or	6.1	3.4	0.12	1.4
MS4D-x033-150	0 to 10 Vdc Proportional	$\begin{gathered} 20 \text { to } 30 \\ \text { Vdc } \\ \hline \end{gathered}$				
MS4D-x033-160	4 to 20 mAdc Proportional					

2-Way Ball Valve Assembly Dimensions

Valve Assembly Part Number	Valve Size in.	P Code ${ }^{\text {a }}$	Valve Dimensions in inches (mm) Refer to Figure 1			
			A	B	C	D
$\begin{aligned} & 2 \text { 2-Way } \\ & \text { VF-22×3-505-9-P } \\ & \text { VF-22×3-506-9-P } \\ & \text { VS-22×3-505-9-P } \\ & \text { VS-22×3-506-9-P } \end{aligned}$	$1 / 2$	1, 2, 3, 4, 5, 7	2-3/8 (60)	7 (178)	81/4 (210)	3-1/8 (79)
		6	2-5/8 (67)	7 (178)	81⁄2 (216)	3-3/8 (86)
	$3 / 4$	$\begin{gathered} 11,12,13,14, \\ 15,17 \end{gathered}$	2-7/16 (62)	7 (178)	81/4 (210)	$311 / 4$ (83)
		16, 18	23/4 (70)	7 (178)	81⁄2 (216)	3-3/8 (86)
	1	21, 23	3-1/16 (78)	7 (178)	8-7/8 (225)	3-5/8 (92)
		22, 25	23/4 (70)	7 (178)	8½ (216)	3-3/8 (86)
		24, 26	41⁄2 (114)	7-3/8 (187)	9-3/8 (238)	3-7/8 (98)
		27	3 (76)	7 (178)	8-7/8 (225)	3-5/8 (92)
	$11 / 4$	41, 42, 43, 45	3 (76)	7 (178)	8-7/8 (225)	3-5/8 (92)
		44, 46	3-5/8 (92)	7-1/8 (181)	9-3/8 (238)	3-3/4 (95)
	$11 / 2$	51, 53	3-7/16 (87)	7-1/8 (181)	9-3/8 (238)	3-3/4 (95)
		52, 54	4-1/16 (103)	71/4 (184)	9-7/8 (251)	4-1/16 (103)
	2	61, 65	3-15/16 (100)	71/4 (184)	9-7/8 (251)	4 (102)
		63, 66, 67	4-15/16 (125)	7-3/4 (197)	101⁄2 (267)	4-7/16 (113)
	$21 / 2$	$\begin{gathered} 71,72,76,73 \\ 74,75 \end{gathered}$	5-3/8 (137)	8 (203)	10-3/4 (273)	41⁄2 (114)
	3	82, 85	5-11/16 (144)	8-1/8 (206)	10-11/16 (271)	41/4 (108)

[^11]

Figure 1. Mx41-6043 or Mx41-6083 with 2-Way Ball Valve.
8. VBB/VBS and VB-2000 Series Ball Valve Assemblies

VB-2000 3-Way Ball Valve Assembly Dimensions (44/88 Ib-in.)

3-Way Mixing Ball Valve Assembly Dimensions

Valve Assembly Part Number	Valve Size in.	P Code ${ }^{\text {a }}$	Valve Dimensions in inches (mm) Refer to Figure 2				
			A	B	C	D	E
$\begin{gathered} \text { 3-Way } \\ \text { VF-2313-505-9-P } \\ \text { VF-2313-506-9-P } \\ \text { VS-2313-505-9-P } \\ \text { VS-2313-506-9-P } \end{gathered}$	1/2	1, 2, 3, 4, 5, 6	2-5/8 (67)	7 (178)	9-3/4 (248)	3-5/16 (84)	2 (51)
	$3 / 4$	$\begin{gathered} 11,12,13,14 \\ 15,16 \end{gathered}$	23/4 (70)	7 (178)	9-3/4 (248)	$3114(83)$	2 (51)
	1	$\begin{gathered} 21,22,23,24, \\ 25,28 \end{gathered}$	23/4 (70)	7 (178)	9-13/16 (249)	3¼ (83)	2-1/8 (54)
		27, 30	41/4 (108)	7-3/8 (187)	11-5/8 (295)	3-5/8 (92)	3-1/16 (78)
		26, 29, 31	41/4 (108)	$71 / 2$ (191)	11112 (292)	$3112(89)$	3-1/8 (79)
	$11 / 4$	45	3 (76)	7 (178)	10-5/8 (270)	3-5/8 (92)	2-3/8 (60)
		41, 43, 44, 46	3-5/8 (92)	7-1/8 (181)	10-7/8 (276)	$3112(89)$	23/4 (70)
	$11 / 2$	51, 52, 53, 55	3-5/8 (92)	7-1/8 (181)	10-7/8 (276)	3-5/8 (92)	23/4 (70)
		54	4 (102)	71/4 (184)	11-3/4 (298)	4 (102)	3114 (83)
		56	4 (102)	7-3/4 (197)	11-3/4 (298)	4 (102)	3114 (83)
	2	61, 63	3-15/16 (100)	71/4 (184)	11-3/4 (298)	3-7/8 (98)	3-1/16 (78)
		62, 64	4-7/8 (124)	7-3/4 (197)	12-11/16 (322)	4½ (114)	3-7/8 (98)

a - To find the corresponding flow coefficients for these port codes, refer to "3-Way Ball Valve Assemblies - Sizes, Port Codes, and Cvs" on page 145.

Figure 2. $\mathrm{M} \times 41-6043$ or $\mathrm{Mx41-6083}$ with 3-Way Ball Valve.

2-Way Ball Valve Assembly Dimensions

[^12]

Figure 3. $\mathrm{M} \times 40-704 \mathrm{x}$ with $2-W a y$ Ball Valve.
8. VBB/VBS and VB-2000 Series Ball Valve Assemblies

VB-2000 3-Way Mixing Ball Valve Assembly Dimensions (35 lb-in.)

3-Way Mixing Ball Valve Assembly Dimensions

Valve Assembly Part Number	Valve Size in.	P Code ${ }^{\text {a }}$	Valve Dimensions in inches (mm) Refer to Figure 4				
			A	B	C	D	E
$\begin{gathered} 3-W a y \\ \text { VA-2313-526-9-P } \end{gathered}$	1/2	1, 2, 3, 4, 5, 6	2-5/8 (67)	7-3/8 (187)	9-3/4 (248)	3-5/16 (84)	2 (51)
	$3 / 4$	$\begin{gathered} 11,12,13,14 \\ 15,16 \end{gathered}$	23/4 (70)	7-3/8 (187)	9-3/4 (248)	31⁄4 (83)	2 (51)
	1	$\begin{gathered} 21,22,23,24 \\ 25,28 \end{gathered}$	23/4 (70)	7-3/8 (187)	9-13/16 (249)	3114 (83)	2-1/8 (54)
		27, 30	41/4 (108)	8 (203)	11-5/8 (295)	3-5/8 (92)	3-1/16 (78)
VA-2313-536-9-P		26, 29, 31	41/4 (108)	8-1/8 (206)	111⁄2 (292)	3122 (89)	3-1/8 (79)
VF-2313-526-9-P	$11 / 4$	45	3 (76)	7-3/8 (187)	10-5/8 (270)	3-5/8 (92)	2-3/8 (60)
VF-2313-536-9-P		41, 43, 44, 46	3-5/8 (92)	7-3/4 (197)	10-7/8 (276)	3112 (89)	23/4 (70)
VS-2313-536-9-P	$11 / 2$	51, 52, 53, 55	3-5/8 (92)	7-3/4 (197)	10-7/8 (276)	3-5/8 (92)	23/4 (70)
		54	4 (102)	7-7/8 (200)	11-3/4 (298)	4 (102)	$311 / 4$ (83)
		56	4 (102)	8-3/8 (213)	11-3/4 (298)	4 (102)	3114 (83)
	2	61, 63	3-15/16 (100)	7-7/8 (200)	11-3/4 (298)	3-7/8 (98)	3-1/16 (78)
		62, 64	4-7/8 (124)	8-3/8 (213)	12-11/16 (322)	41⁄2 (114)	3-7/8 (98)

a - To find the corresponding flow coefficients for these port codes, refer to "3-Way Ball Valve Assemblies - Sizes, Port Codes, and Cvs" on page 145.

Figure 4. Mx40-704x with 3-Way Ball Valve.
8. VBB/VBS and VB-2000 Series Ball Valve Assemblies

2-Way Ball Valve Assembly Dimensions

Valve Assembly Part Number	Valve Size in.	P Code ${ }^{\text {a }}$	Valve Dimensions in inches (mm) Refer to Figure 5			
			A	B	C	D
2-Way	1/2	$1,2,3,4,5,7$	2-3/8 (60)	81/4 (210)	81/4 (210)	3-1/8 (79)
VA-22x3-815-9-P		6	2-5/8 (67)	81/4 (210)	81⁄2 (216)	3-3/8 (86)
VA-22x3-817-9-P VA-22x3-821-9-P	$3 / 4$	$\begin{gathered} 11,12,13,14 \\ 15,17 \end{gathered}$	2-7/16 (62)	81/4 (210)	81/4 (210)	31/4 (83)
VA-22x3-831-9-P		16, 18	23/4 (70)	81/4 (210)	81⁄2 (216)	3-3/8 (86)
	1	21, 23	3-1/16 (78)	81/4 (210)	8-7/8 (225)	3-5/8 (92)
VF-22x3-821-9-P		22, 25	23/4 (70)	81/4 (210)	8½ (216)	3-3/8 (86)
VF-22x3-831-9-P		24, 26	4½ (114)	8-7/8 (225)	9-3/8 (238)	3-7/8 (98)
$\begin{aligned} & \text { VS-22×3-821-9-P } \\ & \text { VS-22×3-831-9-P } \end{aligned}$		27	3 (76)	81/4 (210)	8-7/8 (225)	3-5/8 (92)

a - To find the corresponding flow coefficients for these port codes, refer to "2-Way Ball Valve Assemblies with Sizes, Port Codes, and Cvs." on page 145.

Figure 5. MA4D-7033, MF4D-7033, MS4D-7033, MA4D-8033, MF4D-8033, or MS4D-8033 with 2-Way Ball Valve.
8. VBB/VBS and VB-2000 Series
Ball Valve Assemblies

> VB-2000 3-Way Mixing Ball Valve Assembly Dimensions $(30$ Ib-in.)

3-Way Mixing Ball Valve Assembly Dimensions

Valve Assembly Part Number	Valve Size in.	P Code ${ }^{\text {a }}$	Valve Dimensions in inches (mm) Refer to Figure 6				
			A	B	C	D	E
3-Way	1/2	1, 2, 3, 4, 5, 6	2-5/8 (67)	81/2 (216)	9-3/4 (248)	3-5/16 (84)	2 (51)
VA-2313-815-9-P VA-2313-817-9-P	$3 / 4$	$\begin{gathered} 11,12,13,14 \\ 15,16 \end{gathered}$	23/4 (70)	81⁄2 (216)	9-3/4 (248)	$311 / 4$ (83)	2 (51)
VA-2313-821-9-P VA-2313-831-9-P		$\begin{gathered} 21,22,23,24 \\ 25,28 \end{gathered}$	23/4 (70)	81/2 (216)	9-13/16 (249)	$3114(83)$	2-1/8 (54)
		27, 30	4114 (108)	8-7/8 (225)	11-5/8 (295)	3-5/8 (92)	3-1/16 (78)
VF-2313-821-9-P VF-2313-831-9-P VS-2313-821-9-P VS-2313-831-9-P	1	26, 29, 31	41⁄4 (108)	9 (229)	111⁄2 (292)	$3112(89)$	3-1/8 (79)

a - To find the corresponding flow coefficients for these port codes, refer to "3-Way Ball Valve Assemblies - Sizes, Port Codes, and Cvs" on page 145.

Figure 6. MA4D-7033, MF4D-7033, MS4D-7033, MA4D-8033, MF4D-8033, or MS4D-8033 with 3-Way Ball Valve.

9. Zone Valves

PopTop ${ }^{\text {™ }}$ Modulating Spring Return Valves \& Actuators

Spring Return

The most modern, cost-effective range of electrically operated, modulating, temperature control, Schneider Electric's patented equal percentage flow plug, standard in control valves up to 3.4 KV , is designed for applications requiring a constant, level temperature. These highly reliable valves are designed specifically for use in fan coil, VAV reheat, unit ventilators, air handling unit, baseboard and radiant applicatioans. The compact design installs in small compartments and still allows service access. Designed for use in closed hydronic heating and cooling applications.

Features

- Rugged Brass forged 20.6 BAR rated valve body
- Patented equal percentage flow plug up to 3.4 Kv
- Kv 0.86 to 6.9
- Manual override
- Position indicator
- Thermoplastic enclosure
- Jumper selectable operating ranges
- 24 VAC, 3 -wire floating and 0-10 VDC, 0-5 VDC 5-10 VDC, or 4-20 mA proportional controls
- Chilled or hot water applications
- Time-out feature for extended life
- Meets or exceeds ANSI IV standard for close-off; equal to 0.01% of Kv
- UL Listed actuator

PopTop™ Modulating Non-Spring Return Valves \& Actuators

Non-Spring Return

All of our PopTop Modulating valves and actuators feature a position indicator, manual override, thermoplastic enclosure, and time-out option. Modulating valves are designed for a fan coil, VAV reheat, unit ventilator, air handling unit, baseboard and radiant applications.

Features

- Rugged Brass forged 300 psig rated valve body
- Patented equal percentage flow plug up to 3.4 Kv
- Kv 0.86 to 6.9
- Manual override
- Position indicator
- Thermoplastic enclosure
- Non-spring return operation
- Jumper selectable operating ranges
- 24 VAC, 3 -wire floating and 0-10 VDC, 0-5 VDC, 5-10 VDC, or 4-20 mA proportional controls
- Compatible with most DDC control systems
- Chilled or hot water applications
- Time-out feature for extended life
- Meets or exceeds ANSI IV standard for close-off; equal to 0.01% of Kv
- UL Listed actuator

Specify Three Part Number Fields for the Valve and Three for Actuator Assembly Part Number

Ordering Modulating Zone Valve Assemblies

Available Actuators (2)

Part Number	Action	Actuator Type	Option
AT13A00T	Spring Return	Three Wire Floating	With Time-Out
AT23A00T	Spring Return	Three Wire Floating	With Time-Out
AT33A000	Non-Spring Return	Three Wire Floating	None
AT33A00T	Non-Spring Return	Three Wire Floating	With Time-Out
AP13A000	Spring Return	Proportional	None
AP23A000	Spring Return	Proportional	None
AP33A000	Non-Spring Return	Proportional	None

(1) This feature is standard for floating spring return actuators and must be included in the part number.
(2) If the actuator doesn't have a time-out feature then the controller needs to have a time-out feature.
(3) When ordering only a valve body make selections for the 3 configurable fields shown to derive a 6-digit number.
(4)

When ordering only an actuator, prefix with the letter A then make selections for the 3 configurable fields shown, to derive a 6-digit number (the 5th position is a double zero).

2-Position SR/NSR Zone Valves \& Assembly Ordering

Two Position
Spring and Non-Spring Return

AG, AH Series

Features

- Hysteresis synchronous motor for long life.
- Spring return operation.
- Valve body rated for 300 psig (20.6 bar) static pressure.
- Available in a variety of voltages.
- Actuator mounts directly onto the valve body without the need for linkages or calibration.
- Manual opening lever (normally closed only).
- Actuator can be replaced without any tools, or removal of the valve from the system.
- VS series valves available for low pressure steam.

Specify Five Part Number Fields for the Valve and Four for a 2-Position Zone Valve Assembly Part Number

Ordering 2-Position Zone Valve Assemblies

Body \& Actuator Combination Requirements

Temperature Configurations	
Body Configuration	Actuator Spring Return Mode
V T $\times \times \times$	A $\times \times 3 \times \times \times \times$
T = General	$3=$ General Temperature
S = Steam	4 = High Temperature
If body configuration is T, actuator temp. rating can be 3 or 4	If actuator temp rating is 3, body style must be T
If body configuration is S, actuator temp. rating must be 4.	If actuator temp rating is 4, body style must be S or T

(1) When ordering only a valve body make selections for the five configurable fields shown to derive a 6-digit number.
(2) When ordering only an actuator, prefix with the letter A then make selections for the four configurable fields shown, to derive a 6-digit number (the 5th position is " 02 ").

Flow Type
1... 4 Cv equal \% 7.58/8 Cv linear Body

Seat	Brass
Stem	Nickel plated brass
Paddle/Plug	Highly saturated nitrile
Fluid Temperature	$32 \ldots 200^{\circ} \mathrm{F}$ @ $104^{\circ} \mathrm{F}$ ambient
	$\left(0 \ldots 90^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}\right)$
Maximum Static Pressure	$300 \mathrm{psi}(20.6 \mathrm{bar})$
Seat Leakage	ANSI IV

	Size in.	$\mathrm{Cv}\left(\mathrm{K}_{\mathrm{vs}}\right)$	Close Off Pressure psi (kPa)	Floating With Timeout 24 Vac		$\begin{gathered} \text { Proportional }{ }^{\mathrm{a}} \\ \text { 0-10 V, 4-20 mA } \end{gathered}$
	1/2	1 (0.8)	50 (344)		VM2221T23A00T	VM2221P23A000
		2 (1.7)	50 (344)		VM2222T23A00T	VM2222P23A000
		4 (3.5)	35 (241)		VM2223T23A00T	VM2223P23A000
	3/4	2 (1.7)	50 (344)		VM2322T23A00T	VM2322P23A000
		4 (3.5)	35 (241)		VM2323T23A00T	VM2323P23A000
		7.5 (6.5)	35 (241)		VM2327T23A00T	VM2327P23A000
	1	8 (6.9)	35 (241)		VM2427T23A00T	VM2427P23A000
	Size	$\mathrm{Cv}(\mathrm{K}$ vs)	Close Off Pressure psi (kPa)		Floating With Timeout 24 Vac	$\begin{gathered} \text { Proportional }{ }^{\mathrm{a}} \\ 0-10 \mathrm{~V}, 4-20 \mathrm{~mA} \end{gathered}$
	in.		Spring Close	Motor Close		
	1/2	1 (0.8)	50 (344)	50 (344)	VM2221T13A00T	VM2221P13A000
		2 (1.7)	20 (138)	50 (344)	VM2222T13A00T	VM2222P13A000
		4 (3.5)	20 (138)	35 (241)	VM2223T13A00T	VM2223P13A000
	3/4	2 (1.7)	20 (138)	50 (344)	VM2322T13A00T	VM2322P13A000
		4 (3.5)	20 (138)	35 (241)	VM2323T13A00T	VM2323P13A000
		7.5 (6.5)	15 (103)	35 (241)	VM2327T13A00T	VM2327P13A000
	1	8 (6.9)	15 (103)	35 (241)	VM2427T13A00T	VM2427P13A000

a-Factory proportional control signal is direct-acting. An increase in control signal will open a N.C. valve and close a N.O. valve.

${ }^{\text {a }}$ Factory proportional control signal is direct-acting. An increase in control signal will open B port and close A port.

3-Way Flow Pattern		Actuator Code Table		
B	A	Operation	Model	Description
	For normally open, reverse pipe A and B ports. B port is normally closed.	2-Way N.O.	AT23A00T	3 -wire Floating with Timeout
		2-Way N.C.	AT13A00T	
		3-Way N.C.	AT13A00T	

Erie ${ }^{\text {TM } 1 / 22^{\prime} . .11 ⁄ 4 " ~ S w e a t ~ E n d s ~ 2-W a y ~}$
 Modulating N．O．／N．C and 3－Way

Flow Type	$1 \ldots 4 \mathrm{Cv}$ equal $\% 7.58 / 8 \mathrm{Cv}$ linear
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle／Plug	Highly saturated nitrile
Fluid Temperature	$32 \ldots 200^{\circ} \mathrm{F} @ 104^{\circ} \mathrm{F}$ ambient $\left(0 . . .93^{\circ} \mathrm{C} \mathrm{@} 40^{\circ} \mathrm{C}\right)$
Maximum Static Pressure	300 psi $(20.6 \mathrm{bar})$
Seat Leakage	ANSI IV

1／2．．．1－1／4＂Sweat Ends Two－Way Spring Return Modulating Normally Open

Size in．	Cv（Kvs）	Close Off Pressure psi（kPa） Motor Close	Floating With Timeout $\mathbf{2 4 ~ V a c ~}$	Proportionala $\mathbf{0 . . . 1 0 ~ V , ~ 4 . . . 2 0 ~ m A ~}$
$1 / 2$	$1(0.8)$	$50(344)$	VM2211T23A00T	VM2211P23A000
	$2(1.7)$	$50(344)$	VM2212T23A00T	VM2212P23A000
	$4(3.5)$	$35(241)$	VM2213T23A00T	VM2213P23A000
$3 / 4$	$2(1.7)$	$50(344)$	VM2312T23A00T	VM2312P23A000
	$4(3.5)$	$35(241)$	VM2313T23A00T	VM2313P23A000
	$7.5(6.5)$	$35(241)$	VM2317T23A00T	VM2317P23A000
1	$4(3.5)$	$35(241)$	VM2413T23A00T	VM2413P23A000
$1-1 / 4$	$8(6.9)$	$35(241)$	VM2417T23A00T	VM2417P23A000

a－Factory proportional control signal is direct－acting．An increase in control signal will open a N．C．valve and close a N．O．valve．

Model	Description
AT23A00T	3－Wire Floating with Timeout

1／2．．．1－1／4＂Sweat Ends Two－Way Spring Return Modulating Normally Closed

Size in．	Cv（Kvs）	Close Off Pressure psi（kPa）Motor Close	Spring Close	Floating With Timeout 24 Vac	Proportionala $\mathbf{0 . . . 1 0 ~ V , ~ 4 . . . 2 0 ~ m A ~}$
$1 / 2$	$1(0.8)$	$50(344)$	$50(344)$	VM2211T13A00T	VM2211P13A000
	$2(1.7)$	$50(344)$	$20(138)$	VM2212T13A00T	VM2212P13A000
	$4(3.5)$	$35(241)$		VM2213T13A00T	VM2213P13A000
$3 / 4$	$2(1.7)$	$50(344)$		VM2312T13A00T	VM2312P13A000
	$4(3.5)$	$35(241)$		VM2313T13A00T	VM2313P13A000
	$7.5(6.5)$	$35(241)$	$15(103)$	VM2317T13A00T	VM2317P13A000
1	$4(3.5)$	$35(241)$	$20(138)$	VM2413T13A00T	VM2413P13A000
	$8(6.9)$	$35(241)$	$15(103)$	VM2417T13A00T	VM2417P13A000
$1-1 / 4$	$8(6.9)$			VM2517T13A00T	VM2517P13A000

a－Factory proportional control signal is direct－acting．An increase in control signal will open a N．C．valve and close a N．O．valve．

Model	Description	
AT13A00T	3－Wire Floating with Timeout	

1／2．．．1－1／4＂Sweat Ends Three－Way Mixing Spring Return Modulating Normally Closed（B－Port）

Size in．	Cv（Kvs）	Close Off Pressure psi（kPa）		Floating With Timeout 24 Vac	Proportionala 0．．．10 V， $\mathbf{4} \ldots \mathbf{2 0} \mathbf{m A}$
		Spring Close	Motor Close		
$1 / 2$	$1(0.8)$	$50(344)$	$50(344)$	VM3211T13A00T	VM3211P13A000
	$2(1.7)$	$20(138)$	$50(344)$	VM3212T13A00T	VM3212P13A000
	$4(3.5)$	$20(138)$	$35(241)$	VM3213T13A00T	VM3213P13A000
$3 / 4$	$2(1.7)$	$20(138)$	$50(344)$	VM3312T13A00T	VM3312P13A000
	$4(3.5)$	$20(138)$	$35(241)$	VM3313T13A00T	VM3313P13A000
	$7.5(6.5)$	$15(103)$	$35(241)$	VM3317T13A00T	VM3317P13A000
1	$4(3.5)$	$20(138)$	$35(241)$	VM3413T13A00T	VM3413P13A000
	$8(6.9)$	$15(103)$	$35(241)$	VM3417T13A00T	VM3417P13A000
$1-1 / 4$	$8(6.9)$	$15(103)$	$35(241)$	VM3517T13A00T	VM3517P13A000

For normally open，reverse pipe A and B ports．B port is normally closed．
a－Factory proportional control signal is direct－acting．An increase in control signal will open B port and close A port

Model	Description	
AT13A00T	3－Wire Floating with Timeout	

Erie ${ }^{\text {TM } 1 ⁄ 2 \text { "...1" NPT 2-Way }}$ Modulating \& 3-Way Mixing NSR

Flow Type	1...4 Cv equal \% 7.58/8 Cv linear
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle/Plug	Highly saturated nitrile
Fluid Temperature	$32 . .200^{\circ} \mathrm{F}$ @ $104^{\circ} \mathrm{F}$ ambient ($0 . . .93^{\circ} \mathrm{C}$ @ $40^{\circ} \mathrm{C}$)
Maximum Static Pressure	300 psi (20.6 bar)
Seat Leakage	ANSIIV

	Size in.	$\mathrm{Cv}\left(\mathrm{K}_{\text {vs }}\right)$	Close Off Pressure psi (kPa) Motor Close	Floating With Timeout 24 Vac	Floating Requires Thermostat/Controller with Timeout. 24 Vac	$\begin{aligned} & \text { Proportional }^{\text {a }} \\ & 0-10 \mathrm{~V}, 4-20 \mathrm{~mA} \end{aligned}$
잉	1/2	1 (0.8)	50 (344)	VM2221T33A00T	VM2221T33A000	VM2221P33A000
\sum_{α}		2 (1.7)	50 (344)	VM2222T33A00T	VM2222T33A000	VM2222P33A000
$\underset{\sim}{\infty}$		4 (3.5)	35 (241)	VM2223T33A00T	VM2223T33A000	VM2223P33A000
	3/4	2 (1.7)	50 (344)	VM2322T33A00T	VM2322T33A000	VM2322P33A000
		4 (3.5)	35 (241)	VM2323T33A00T	VM2323T33A000	VM2323P33A000
		7.5 (6.5)	35 (241)	VM2327T33A00т	VM2327T33A000	VM2327P33A000
	1	8 (6.9)	35 (241)	VM2427T33A00T	VM2427T33A000	VM2427P33A000

a-Factory proportional control signal is direct-acting. An increase in control signal will open this model.

$\stackrel{\text { 을 }}{1}$	Size in.	$\mathrm{Cv}\left(\mathrm{K}_{\mathrm{vs}}\right)$	Close Off Pressure psi (kPa) Motor Close	Floating With Timeout 24 Vac	Floating Requires Thermostat/Controller with Timeout. 24 Vac	$\begin{gathered} \text { Proportional }{ }^{\text {a }} \\ 0-10 \mathrm{~V}, 4-20 \mathrm{~mA} \end{gathered}$
\sum	1/2	1 (0.8)	50 (344)	VM3221T33A00T	VM3221T33A000	VM3221P33A000
$\stackrel{\boxed{0}}{\mathbf{N}}$		2 (1.7)	50 (344)	VM3222T33A00T	VM3222T33A000	VM3222P33A000
$\underset{\substack{\text { n }}}{\substack{n}}$		4 (3.5)	35 (241)	VM3223T33A00T	VM3223T33A000	VM3223P33A000
	3/4	2 (1.7)	50 (344)	VM3322T33A00T	VM3322T33A000	VM3322P33A000
		4 (3.5)	35 (241)	VM3323T33A00T	VM3323T33A000	VM3323P33A000
		7.5 (6.5)	35 (241)	VM3327T33A00T	VM3327T33A000	VM3327P33A000
	1	8 (6.9)	35 (241)	VM3427T33A00T	VM3427T33A000	VM3427P33A000

a-Factory proportional control signal is direct-acting. An increase in control signal will open B port and close A port. Erie ${ }^{\text {TM } 1 ⁄ 2 " . . .1 ¼ " ~ S w e a t ~ E n d s ~ 2-W a y ~ N S R ~ M o d u l a t i n g ~}$

$\begin{aligned} & \text { Size } \\ & \text { in. } \end{aligned}$	$\mathrm{Cv}\left(\mathrm{K}_{\text {vs }}\right)$	Close Off Pressure psi (kPa) Motor Close	Floating With Timeout 24 Vac	Floating Requires Thermostat/Controller with Timeout. 24 Vac	$\begin{gathered} \text { Proportional }^{\mathrm{a}} \\ 0-10 \mathrm{~V}, 4-20 \mathrm{~mA} \end{gathered}$
1/2	1 (0.8)	50 (344)	VM2211T33A00T	VM2211T33A000	VM2211P33A000
	2 (1.7)	50 (344)	VM2212T33A00T	VM2212T33A000	VM2212P33A000
	4 (3.5)	35 (241)	VM2213T33A00T	VM2213T33A000	VM2213P33A000
3/4	2 (1.7)	50 (344)	VM2312T33A00T	VM2312T33A000	VM2312P33A000
	4 (3.5)	35 (241)	VM2313T33A00T	VM2313T33A000	VM2313P33A000
	7.5 (6.5)	35 (241)	VM2317T33A00T	VM2317T33A000	VM2317P33A000
1	4 (3.5)	35 (241)	VM2413T33A00T	VM2413T33A000	VM2413P33A000
	8 (6.9)	35 (241)	VM2417T33A00T	VM2417T33A000	VM2417P33A000
1-1/4	8 (6.9)	35 (241)	VM2517T33A00T	VM2517T33A000	VM2517P33A000

a-Factory proportional control signal is direct-acting. An increase in control signal will open this model.

Flow Type	1... 4 Cv equal \% 7.58/8 Cv linear
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle/Plug	Highly saturated nitrile
Fluid Temperature	$32 . . .200{ }^{\circ} \mathrm{F} @ 104^{\circ} \mathrm{F}$ ambient (0...93 ${ }^{\circ} \mathrm{C}$ @ $\left.40^{\circ} \mathrm{C}\right)$
Maximum Static Pressure	300 psi (20.6 bar)
Seat Leakage	ANSI IV

Size in.	$\mathrm{Cv}\left(\mathrm{K}_{\text {vs }}\right)$	Close Off Pressure psi (kPa) Motor Close	Floating With Timeout 24 Vac	Floating Requires Thermostat/Controller with Timeout. 24 Vac	Proportional ${ }^{\text {a }}$ 0-10 V, 4-20 mA, 0-5 Vdc or 5-10 Vdc
1/2	1 (0.8)	50 (344)	VM3211T33A00T	VM3211T33A000	VM3211P33A000
	2 (1.7)	50 (344)	VM3212T33A00T	VM3212T33A000	VM3212P33A000
	4 (3.5)	35 (241)	VM3213T33A00T	VM3213T33A000	VM3213P33A000
3/4	2 (1.7)	50 (344)	VM3312T33A00T	VM3312T33A000	VM3312P33A000
	4 (3.5)	35 (241)	VM3313T33A00T	VM3313T33A000	VM3313P33A000
	7.5 (6.5)	35 (241)	VM3317T33A00T	VM3317T33A000	VM3317P33A000
1	4 (3.5)	35 (241)	VM3413T33A00T	VM3413T33A000	VM3413P33A000
	8 (6.9)	35 (241)	VM3417T33A00T	VM3417T33A000	VM3417P33A000
1-1/4	8 (6.9)	35 (241)	VM3517T33A00T	VM3517T33A000	VM3517P33A000

a-Factory proportional control signal is direct-acting. An increase in control signal will open B port and close A port.

Actuator Code Table		
Operation	Model	Description
3-Way NPT	AP33A000	$0 \ldots 10 \mathrm{Vdc}$ $4 \ldots 20 \mathrm{~mA}$ field selectable

Flow Type	On，Off，N．O．or N．C．
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle／Plug	Highly saturated nitrile（VS），Burna N （VT）
Fluid Temperature	VT Series： $32 \ldots 200^{\circ} \mathrm{F}$＠ $104^{\circ} \mathrm{F}$ ambient （ $0 . . .93^{\circ} \mathrm{C}$＠ $40^{\circ} \mathrm{C}$ ）water VS Series： $32 . . .250{ }^{\circ} \mathrm{F}$＠ $169^{\circ} \mathrm{F}$ ambient $\left(0 . .121^{\circ} \mathrm{C} @ 76{ }^{\circ} \mathrm{C}\right)$ water or 15 psi steam
Maximum Static Pressure	300 psi（20．6 bar）
Seat Leakage	ANSI IV

Size in．	$\begin{gathered} \mathrm{Cv}_{\mathrm{c}} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \end{gathered}$	Close Off Pressure psi（kPa）	Normally Open／Normally Closed	VT Series 32 to $200{ }^{\circ} \mathrm{F}$		VS Series－High Temp 32 to $250{ }^{\circ} \mathrm{F}$	
				24 Vac	120 Vac	24 Vac	120 Vac
1／2	1 （0．8）	60 （413）	NC	VT2211G13A020	VT2211G13B020	VS2211G14A020	VS2211G14B020
			NO	VT2211G23A020	VT2211G23B020	VS2211G24A020	VS2211G24B020
	2.5 （2．2）	40 （275）	NC	VT2212G13A020	VT2212G13B020	VS2212G14A020	VS2212G14B020
			NO	VT2212G23A020	VT2212G23B020	VS2212G24A020	VS2212G24B020
	3.5 （3）	25 （172）	NC	VT2213G13A020	VT2213G13B020	VS2213G14A020	VS2213G14B020
			NO	VT2213G23A020	VT2213G23B020	VS2213G24A020	VS2213G24B020
3／4	2.5 （2．2）	40 （275）	NC	VT2312G13A020	VT2312G13B020	VS2312G14A020	VS2312G14B020
			NO	VT2312G23A020	VT2312G23B020	VS2312G24A020	VS2312G24B020
	3.5 （3）	25 （172）	NC	VT2313G13A020	VT2313G13B020	VS2313G14A020	VS2313G14B020
			NO	VT2313G23A020	VT2313G23B020	VS2313G24A020	VS2313G24B020
	5 （4．3）	20 （138）	NC	VT2315G13A020	VT2315G13B020	VS2315G14A020	VS2315G14B020
			NO	VT2315G23A020	VT2315G23B020	VS2315G24A020	VS2315G24B020
	7.5 （6．5）	17 （117）	NC	VT2317G13A020	VT2317G13B020	VS2317G14A020	VS2317G14B020
			NO	VT2317G23A020	VT2317G23B020	VS2317G24A020	VS2317G24B020
1	5 （4．3）	20 （138）	NC	VT2415G13A020	VT2415G13B020	VS2415G14A020	VS2415G14B020
			NO	VT2415G23A020	VT2415G23B020	VS2415G24A020	VS2415G24B020
	7.5 （6．5）	17 （117）	NC	VT2417G13A020	VT2417G13B020	VS2417G14A020	VS2417G14B020
			NO	VT2417G23A020	VT2417G23B020	VS2417G24A020	VS2417G24B020
1－1／4	8 （6．9）	17 （117）	NC	VT2517G13A020	VT2517G13B020	VS2517G14A020	VS2517G14B020
			NO	VT2517G23A020	VT2517G23B020	VS2517G24A020	VS2517G24B020

Actuator Code Table	
Model	Description
AG13A020，AG23A020，	
AG14A020，AG24A020	2－Position
AG13B020，AG23B020	
AG14B020，AG24B020	

Erie ${ }^{\text {TM } 1 / 2 " . . .1 " ~ T w o ~ P o s i t i o n ~ 2-W a y ~}$ SR General Close Off－Female NPT

Flow Type	On，Off，N．O．or N．C．
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle／Plug	Highly saturated nitrile（VS），Burna N（VT）
Fluid Temperature	VT Series： $32 . . .200{ }^{\circ} \mathrm{F}$＠ $104^{\circ} \mathrm{F}$ ambient （ $0 . . .93^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$ ）water VS Series：32．．． $250{ }^{\circ} \mathrm{F}$＠ $169{ }^{\circ} \mathrm{F}$ ambient $\left(0 . . .121^{\circ} \mathrm{C} @ 76{ }^{\circ} \mathrm{C}\right)$ water or 15 psi steam
Maximum Static Pressure	300 psi（20．6 bar）
Seat Leakage	ANSIIV

Size in．	$\begin{gathered} \mathrm{Cv}_{\mathrm{c}} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \end{gathered}$	Close Off Pressure psi（kPa）	Normally Open／Normally Closed	VT Series$32 \text { to } 200^{\circ} \mathrm{F}$		VS Series 32 to $250{ }^{\circ} \mathrm{F}$	
				24 Vac	120 Vac	24 Vac	120 Vac
1／2	1 （0．8）	60 （413）	NC	VT2221G13A020	VT2221G13B020	VS2221G14A020	VS2221G14B020
			NO	VT2221G23A020	VT2221G23B020	VS2221G24A020	VS2221G24B020
	2.5 （2．2）	40 （275）	NC	VT2222G13A020	VT2222G13B020	VS2222G14A020	VS2222G14B020
			NO	VT2222G23A020	VT2222G23B020	VS2222G24A020	VS2222G24B020
	3.5 （3）	25 （172）	NC	VT2223G13A020	VT2223G13B020	VS2223G14A020	VS2223G14B020
			NO	VT2223G23A020	VT2223G23B020	VS2223G24A020	VS2223G24B020
3／4	2.5 （2．2）	40 （275）	NC	VT2322G13A020	VT2322G13B020	VS2322G14A020	VS2322G14B020
			NO	VT2322G23A020	VT2322G23B020	VS2322G24A020	VS2322G24B020
	3.5 （3）	25 （172）	NC	VT2323G13A020	VT2323G13B020	VS2323G14A020	VS2323G14B020
			NO	VT2323G23A020	VT2323G23B020	VS2323G24A020	VS2323G24B020
	5 （4．3）	20 （138）	NC	VT2325G13A020	VT2325G13B020	VS2325G14A020	VS2325G14B020
			NO	VT2325G23A020	VT2325G23B020	VS2325G24A020	VS2325G24B020
	7.5 （6．5）	17 （117）	NC	VT2327G13A020	VT2327G13B020	VS2327G14A020	VS2327G14B020
			NO	VT2327G23A020	VT2327G23B020	VS2327G24A020	VS2327G24B020
1	8 （6．9）	17 （117）	NC	VT2427G13A020	VT2427G13B020	VS2427G14A020	VS2427G14B020
			NO	VT2427G23A020	VT2427G23B020	VS2427G24A020	VS2427G24B020

Erie ${ }^{\text {TM }}$
 ½"...11⁄" 2-Way SR High Close Off Two Position - Sweat Ends

Flow Type	On, Off, N.O. or N.C.
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle/Plug	Highly saturated nitrile (VS), Burna N (VT)
Fluid Temperature	VT Series: $32 . . .200^{\circ} \mathrm{F}$ @ $104^{\circ} \mathrm{F}$ ambient ($0 . . .93^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$) water VS Series: $32 \ldots . .250{ }^{\circ} \mathrm{F}$ @ $169{ }^{\circ} \mathrm{F}$ ambient $\left(0 \ldots 121^{\circ} \mathrm{C} @ 76{ }^{\circ} \mathrm{C}\right)$ water or 15 psi steam
Maximum Static Pressure	300 psi (20.6 bar)
Seat Leakage	ANSI IV

$\begin{aligned} & \text { Size } \\ & \text { in. } \end{aligned}$	$\begin{gathered} \mathrm{Cv}_{\mathrm{c}} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \end{gathered}$	Close Off Pressure psi (kPa)	Normally Open/Normally Closed	VT Series 32 to $200{ }^{\circ} \mathrm{F}$		$\begin{gathered} \text { Vs Series } \\ 32 \text { to } 250{ }^{\circ} \mathrm{F} \end{gathered}$	
				24 Vac	120 Vac	24 Vac	120 Vac
1/2	1 (0.8)	75 (517)	NC	VT2211H13A020	VT2211H13B020	VS2211H14A020	VS2211H14B020
			NO	VT2211H23A020	VT2211H23B020	VS2211H24A020	VS2211H24B020
	2.5 (2.2)	50 (345)	NC	VT2212H13A020	VT2212H13B020	VS2212H14A020	VS2212H14B020
			NO	VT2212H23A020	VT2212H23B020	VS2212H24A020	VS2212H24B020
	3.5 (3)	30 (207)	NC	VT2213H13A020	VT2213H13B020	VS2213H14A020	VS2213H14B020
			NO	VT2213H23A020	VT2213H23B020	VS2213H24A020	VS2213H24B020
$3 / 4$	2.5 (2.2)	50 (345)	NC	VT2312H13A020	VT2312H13B020	VS2312H14A020	VS2312H14B020
			NO	VT2312H23A020	VT2312H23B020	VS2312H24A020	VS2312H24B020
	3.5 (3)	30 (207)	NC	VT2313H13A020	VT2313H13B020	VS2313H14A020	VS2313H14B020
			NO	VT2313H23A020	VT2313H23B020	VS2313H24A020	VS2313H24B020
	5 (4.3)	25 (172)	NC	VT2315H13A020	VT2315H13B020	VS2315H14A020	VS2315H14B020
			NO	VT2315H23A020	VT2315H23B020	VS2315H24A020	VS2315H24B020
	7.5 (6.5)	20 (138)	NC	VT2317H13A020	VT2317H13B020	VS2317H14A020	VS2317H14B020
			NO	VT2317H23A020	VT2317H23B020	VS2317H24A020	VS2317H24B020
1	5 (4.3)	25 (172)	NC	VT2415H13A020	VT2415H13B020	VS2415H14A020	VS2415H14B020
			NO	VT2415H23A020	VT2415H23B020	VS2415H24A020	VS2415H24B020
	7.5 (6.5)	20 (138)	NC	VT2417H13A020	VT2417H13B020	VS2417H14A020	VS2417H14B020
			NO	VT2417H23A020	VT2417H23B020	VS2417H24A020	VS2417H24B020
1-1/4	8 (6.9)	20 (138)	NC	VT2517H13A020	VT2517H13B020	VS2517H14A020	VS2517H14B020
			NO	VT2517H23A020	VT2517H23B020	VS2517H24A020	VS2517H24B020

Actuator Code Table	
Model	Description
AH13A020, AH23A020	
AH14A020, AH24A020,	2-Position
AH13B020, AH23B020	
AH14B020, AH24B020	

Flow Type	On，Off，N．O．or N．C．
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle／Plug	Highly saturated nitrile（VS），Burna N（VT）
Fluid Temperature	VT Series：32．．． $200{ }^{\circ} \mathrm{F}$＠ $104^{\circ} \mathrm{F}$ ambient （0．．．93 ${ }^{\circ} \mathrm{C}$＠ $40^{\circ} \mathrm{C}$ ）water VS Series：32．．． $250^{\circ} \mathrm{F}$＠ $169{ }^{\circ} \mathrm{F}$ ambient $\left(0 . . .121^{\circ} \mathrm{C} @ 76{ }^{\circ} \mathrm{C}\right.$ ）water or 15 psi steam
Maximum Static Pressure	300 psi （20．6 bar）
Seat Leakage	ANSI IV

$\begin{gathered} \text { Size } \\ \text { in. } \end{gathered}$	$\begin{gathered} \mathrm{Cv} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \end{gathered}$	Close Off Pressure psi（kPa）	Normally Open／Normally Closed	$\begin{aligned} & \text { VT Series } \\ & 32 \text { to } 200{ }^{\circ} \mathrm{F} \end{aligned}$		$\begin{gathered} \text { VS Series } \\ 32 \text { to } 250^{\circ} \mathrm{F} \end{gathered}$	
				24 Vac	120 Vac	24 Vac	120 Vac
1／2	1 （0．8）	75 （517）	NC	VT2221H13A020	VT2221H13B020	VS2221H14A020	VS2221H14B020
			NO	VT2221H23A020	VT2221H23B020	VS2221H24A020	VS2221H24B020
	2.5 （2．2）	50 （345）	NC	VT2222H13A020	VT2222H13B020	VS2222H14A020	VS2222H14B020
			NO	VT2222H23A020	VT2222H23B020	VS2222H24A020	VS2222H24B020
	3.5 （3）	30 （207）	NC	VT2223H13A020	VT2223H13B020	VS2223H14A020	VS2223H14B020
			NO	VT2223H23A020	VT2223H23B020	VS2223H24A020	VS2223H24B020
3／4	2.5 （2．2）	50 （345）	NC	VT2322H13A020	VT2322H13B020	VS2322H14A020	VS2322H14B020
			NO	VT2322H23A020	VT2322H23B020	VS2322H24A020	VS2322H24B020
	3.5 （3）	30 （207）	NC	VT2323H13A020	VT2323H13B020	VS2323H14A020	VS2323H14B020
			NO	VT2323H23A020	VT2323H23B020	VS2323H24A020	VS2323H24B020
	5 （4．3）	25 （172）	NC	VT2325H13A020	VT2325H13B020	VS2325H14A020	VS2325H14B020
			NO	VT2325H23A020	VT2325H23B020	VS2325H24A020	VS2325H24B020
	7.5 （6．5）	$20 \text { (138) }$	NC	VT2327H13A020	VT2327H13B020	VS2327H14A020	VS2327H14B020
			NO	VT2327H23A020	VT2327H23B020	VS2327H24A020	VS2327H24B020
1	8 （6．9）	20 （138）	NC	VT2427H13A020	VT2427H13B020	VS2427H14A020	VS2427H14B020
			NO	VT2427H23A020	VT2427H23B020	VS2427H24A020	VS2427H24B020

Actuator Code Table	
Model	Description
AH13A020，AH23A020	
AH14A020，AH24A020，	2－Position
AH13B020，AH23B020	
AH14B020，AH24B020	

Flow Type	1... 4 Cv equal \% 8 Cv linear
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle/Plug	Highly saturated nitrile (VS), Burna N (VT)
Fluid Temperature	VT Series: $32 \ldots 200^{\circ} \mathrm{F}$ @ $104^{\circ} \mathrm{F}$ ambient (0... $93^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$) VS Series: 32... $250^{\circ} \mathrm{F}$ @ $169{ }^{\circ} \mathrm{F}$ ambient $\left(0 . .121^{\circ} \mathrm{C} @ 76{ }^{\circ} \mathrm{C}\right)$
Maximum Static Pressure	300 psi (20.6 bar)
Seat Leakage	ANSIIV

$\begin{aligned} & \text { Size } \\ & \text { in. } \end{aligned}$	$\begin{gathered} \mathrm{Cv}_{\mathrm{c}} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \end{gathered}$	Close Off Pressure psi (kPa)	VT Series 32 to $200{ }^{\circ} \mathrm{F}$	VS Series - High Temp 32 to $250{ }^{\circ} \mathrm{F}$	Voltage Vac
1/2	1 (0.8)	60 (413)	VT3211G13A020	VS3211G14A020	24
			VT3211G13B020	VS3211G14B020	120
	3 (2.6)	40 (275)	VT3212G13A020	VS3212G14A020	24
			VT3212G13B020	VS3212G14B020	120
	4 (3.4)	25 (172)	VT3213G13A020	VS3213G14A020	24
			VT3213G13B020	VS3213G14B020	120
3/4	3 (2.6)	40 (275)	VT3312G13A020	VS3312G14A020	24
			VT3312G13B020	VS3312G14B020	120
	4 (3.4)	25 (172)	VT3313G13A020	VS3313G14A020	24
			VT3313G13B020	VS3313G14B020	120
	5 (4.3)	20 (138)	VT3315G13A020	VS3315G14A020	24
			VT3315G13B020	VS3315G14B020	120
	7.5 (6.5)	17 (117)	VT3317G13A020	VS3317G14A020	24
			VT3317G13B020	VS3317G14B020	120
1	5 (4.3)	20 (138)	VT3415G13A020	VS3415G14A020	24
			VT3415G13B020	VS3415G14B020	120
	7.5 (6.5)	17 (117)	VT3417G13A020	VS3417G14A020	24
			VT3417G13B020	VS3417G14B020	120
1-1/4	8 (6.9)	17 (117)	VT3517G13A020	VS3517G14B020	24
			VT3517G13B020	VS3517G14B020	120

3-Way Flow Patterns

Actuator Code Table	
Model	Description
AG13A020, AG14A020, AG13B020, AG14B020	2-Position

For normally open, re-
verse pipe A and B ports. B port is normally closed.

Erie ${ }^{\text {TM } 1 / 2 " . . .1 " ~ 3-W a y ~ M i x i n g ~ o r ~}$ Diverting SR N.C. - Female NPT

Flow Type	1...4 Cv equal \% 8 Cv linear
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle/Plug	Highly saturated nitrile (VS), Burna N (VT)
Fluid Temperature	VT Series: $32 . . .200^{\circ} \mathrm{F}$ @ $104^{\circ} \mathrm{F}$ ambient (0...93 ${ }^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$) VS Series: $32 . . .250{ }^{\circ} \mathrm{F}$ @ $169{ }^{\circ} \mathrm{F}$ ambient $\left(0 \ldots 121^{\circ} \mathrm{C} @ 76{ }^{\circ} \mathrm{C}\right)$
Maximum Static Pressure	300 psi (20.6 bar)
Seat Leakage	ANSIIV

Flow Type	On, Off, N.O. or N.C.
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle/Plug	Highly saturated nitrile (VS), Burna N (VT)
Fluid Temperature	VT Series: $32 \ldots 200^{\circ} \mathrm{F} @ 104^{\circ} \mathrm{F}$ ambient $\left(0 \ldots .3^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}\right)$
	VS Series: 32... $250^{\circ} \mathrm{F}$ @ $169{ }^{\circ} \mathrm{F}$ ambient (0...121 $\left.{ }^{\circ} \mathrm{C} @ 76{ }^{\circ} \mathrm{C}\right)$
Maximum Static Pressure	300 psi (20.6 bar)
Seat Leakage	ANSIIV

$\begin{gathered} \text { Size } \\ \text { in. } \end{gathered}$	$\begin{gathered} \mathrm{Cv}_{\mathrm{ons}} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \end{gathered}$	Close Off psig (kPa)	VT Series 32 to $200{ }^{\circ} \mathrm{F}$		$\begin{aligned} & \text { VS Series - High Temp } \\ & 32 \text { to } 250^{\circ} \mathrm{F} \end{aligned}$	
			24 Vac	120 Vac	24 Vac	120 Vac
1/2	1.5 (1.3)	75 (517)	VT3211H13A020	VT3211H13B020	VS3211H14A020	VS3211H14B020
	3 (2.6)	50 (344)	VT3212H13A020	VT3212H13B020	VS3212H14A020	VS3212H14B020
	4 (3.4)	30 (208)	VT3213H13A020	VT3213H13B020	VS3213H14A020	VS3213H14B020
3/4	3 (2.6)	50 (344)	VT3312H13A020	VT3312H13B020	VS3312H14A020	VS3312H14B020
	4 (3.4)	30 (208)	VT3313H13A020	VT3313H13B020	VS3313H14A020	VS3313H14B020
	5 (4.3)	25 (172)	VT3315H13A020	VT3315H13B020	VS3315H14A020	VS3315H14B020
	7.5 (6.5)	20 (137)	VT3317H13A020	VT3317H13B020	VS3317H14A020	VS3317H14B020
1	5 (4.3)	25 (172)	VT3415H13A020	VT3415H13B020	VS3415H14A020	VS3415H14B020
	7.5 (6.5)	20 (137)	VT3417H13A020	VT3417H13B020	VS3417H14A020	VS3417H14B020
1-1/4	8 (6.9)	20 (137)	VT3517H13A020	VT3517H13B020	VS3517H14A020	VS3517H14B020

Actuator Code Table	
Model	Description
AH13A020, AH14A020, AH13B020, AH14B020	2-Position

For normally open, reverse pipe A and B ports. B port is normally closed.

Erie ${ }^{\text {TM } 1 / 2 " . . .1 " ~ 3-W a y ~ M i x i n g ~ o r ~}$ Diverting SR N.C. - Female NPT

Flow Type	On, Off, N.O. or N.C.
Body	Forged Brass
Seat	Brass
Stem	Nickel plated brass
Paddle/Plug	Highly saturated nitrile (VS), Burna N (VT)
Fluid Temperature	VT Series: $32 . . .200^{\circ} \mathrm{F}$ @ $104^{\circ} \mathrm{F}$ ambient (0... $93^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$) VS Series: $32 \ldots 250{ }^{\circ} \mathrm{F}$ @ $169{ }^{\circ} \mathrm{F}$ ambient $\left(0 \ldots 121^{\circ} \mathrm{C} @ 76{ }^{\circ} \mathrm{C}\right)$
Maximum Static Pressure	300 psi (20.6 bar)
Seat Leakage	ANSI IV

$\begin{gathered} \text { Size } \\ \text { in. } \end{gathered}$	$\begin{gathered} \mathrm{Cv}_{\mathrm{c}} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \end{gathered}$	Close Off psig (kPa)	VT Series$32 \text { to } 200^{\circ} \mathrm{F}$		VS Series$32 \text { to } 250^{\circ} \mathrm{F}$	
			24 Vac	120 Vac	24 Vac	120 Vac
1/2	1.5 (1.3)	75 (517)	VT3221H13A020	VT3221H13B020	VS3221H14A020	VS3221H14B020
	3 (2.6)	50 (344)	VT3222H13A020	VT3222H13B020	VS3222H14A020	VS3222H14B020
	4 (3.4)	30 (208)	VT3223H13A020	VT3223H13B020	VS3223H14A020	VS3223H14B020
3/4	3 (2.6)	50 (344)	VT3322H13A020	VT3322H13B020	VS3322H14A020	VS3322H14B020
	4 (3.4)	30 (203)	VT3323H13A020	VT3323H13B020	VS3323H14A020	VS3323H14B020
	5 (4.3)	25 (172)	VT3325H13A020	VT3325H13B020	VS3325H14A020	VS3325H14B020
	7.5 (6.5)	20 (137)	VT3327H13A020	VT3327H13B020	VS3327H14A020	VS3327H14B020
1	8 (6.9)	20 (137)	VT3427H13A020	VT3427H13B020	VS3427H14A020	VS3427H14B020

Actuator Code Table	
Model	Description
AH13A020, AH14A020, AH13B020, AH14B020	2-Position

For normally open, reverse pipe A and B ports. B port is normally closed.

Connections	18" leads
Enclosure Rating	NEMA 1
Dimensions: G-series	$2-3 / 8 \mathrm{H} \times 2-3 / 8 \mathrm{~W} \times 3-11 / 16 \mathrm{Din}$. (60x60x96mm)
Switches	None
Override	Manual (normally closed models only)
Motor Type	Stepper
Regulatory Compliance	c-UL-us LISTED mark for US safety compliance per UL 60730-1 \& -2-14, and Canadian compliance per CAN/CSA E60730-1 \& -2-14. CE mark EU safety compliance per EN 60730-1 \& -2-14 and per directives 2014-35/EU [LVD], 2014-30/EU [EMC], and 2011/65/EU [RoHS2]. RCM mark compliance for Australian/New Zealand.

General Close-Off, 2-Position, Power (Open or Close): 9 to 11 Seconds; Spring Return (Open or Close): 4 to 5 Seconds						
Model No.	Volts AC	VA	Electrical Position	Temperature Range F (C)	End Of Travel Switch	Wiring
AG13A020	24	7.5	Normally Closed	32 to $200^{\circ} \mathrm{F}$ (Fluid) @ $104^{\circ} \mathrm{F}$ (Ambient) (0 to $93^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$)	No	18 in. (45.7 cm) Leads
AG13B020	120					
AG14A020	24			32 to $250^{\circ} \mathrm{F}$ (Fluid)@ $169{ }^{\circ} \mathrm{F}$		
AG14B020	120			(Ambient) (0 to $121^{\circ} \mathrm{C} @ 76^{\circ} \mathrm{C}$)		
AG23A020	24		Normally Open (can only be used on 2-way valve)	32 to $200^{\circ} \mathrm{F}$ (Fluid) @ $104^{\circ} \mathrm{F}$ (Ambient) (0 to $93^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$)		
AG24A020	24			32 to $250^{\circ} \mathrm{F}$ (Fluid) @ $169^{\circ} \mathrm{F}$ (Ambient) (0 to $121^{\circ} \mathrm{C} @ 76^{\circ} \mathrm{C}$		
AG23B020	120			32 to $200^{\circ} \mathrm{F}$ (Fluid) @ $104^{\circ} \mathrm{F}$ (Ambient) (0 to $93^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$)		
AG24B020	120			32 to $250^{\circ} \mathrm{F}$ (Fluid) @ $169^{\circ} \mathrm{F}$ (Ambient) (0 to $121^{\circ} \mathrm{C} @ 76^{\circ} \mathrm{C}$		

High Close Off, 2-Position, Power (Open or Close): 13 to 18 Seconds; Spring Return (Open or Close): 4 to 5 Seconds						
AH13A020	24	7.5	Normally Closed	32 to $200^{\circ} \mathrm{F}$ (Fluid) @ $104{ }^{\circ} \mathrm{F}$	No	$\begin{gathered} 18 \mathrm{in} . \\ (45.7 \mathrm{~cm}) \\ \text { Leads } \end{gathered}$
AH13B020	120			(Ambient) (0 to $93^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$)		
AH14A020	24			32 to 250° F (Fluid) @ $169^{\circ} \mathrm{F}$		
AH14B020	120			(Ambient) (0 to $\left.121^{\circ} \mathrm{C} @ 76^{\circ} \mathrm{C}\right)$		
AH23A020	24		Normally	32 to $200^{\circ} \mathrm{F}$ (Fluid) @ $104{ }^{\circ} \mathrm{F}$		
AH23B020	120		Open	(Ambient) (0 to $93^{\circ} \mathrm{C} @ 40^{\circ} \mathrm{C}$)		
AH24A020	24		be used	32 to $250^{\circ} \mathrm{F}$ (Fluid) @ $169^{\circ} \mathrm{F}$		
AH24B020	120		on 2-way valve)	(Ambient) (0 to $121^{\circ} \mathrm{C} @ 76^{\circ} \mathrm{C}$)		

Connections	Terminal Block
Enclosure Rating	NEMA 1
Dimensions	$\begin{array}{r} 21 / 4 \mathrm{H} \times 2-3 / 4 \mathrm{~W} \times 41 / 4 \mathrm{D} \mathrm{in} . \\ (57 \times 70 \times 108 \mathrm{~mm}) \end{array}$
Switches	None
Override	Manual
Motor Type	Stepper
Regulatory Compliance	c-UL-us LISTED mark for US safety compliance per UL 60730-1 \& -2-14, and Canadian compliance per CAN/CSA E60730-1 \& -2-14. CE mark EU safety compliance per EN 60730-1 \& -2-14 and per directives 2014-35/EU [LVD], 2014-30/EU [EMC], and 2011/65/EU [RoHS2]. RCM mark compliance for Australian/New Zealand.

Model No.	Maximum Current/Power Requirements 24 Vac mA (VA)	Control Signal	Timeout	Timing (min:sec)	
				60 Hz	50 Hz
AT33A000	$40 \mathrm{~mA} \mathrm{(1.0} \mathrm{VA)}$	$24 \mathrm{Vac}, 3-$ Wire Floating	No	Maximum 2:30	Maximum 3:00
АТЗзАоот	50 mA (1.2 VA)		Yes		-
AP33A000	65 mA (1.6 VA)	$0-10 \mathrm{Vdc}$ or $4-20 \mathrm{~mA}$ Field Selectable	N/A	2:30 + 15 sec . Recalibration Time	3:00 +18 sec. Recalibration Time

Erie ${ }^{\text {TM }}$ APx3, ATx3 Series SR Modulating Actuators

| Model No. | Volts AC | Electrical
 Position | Maximum Current/Power (VA)
 (Running) | Control Signal |
| :--- | :---: | :---: | :---: | :---: |$|$| a |
| :---: | :---: |

a-For transformer sizing a minimum of 10 VA per actuator is required to allow for in-rush.
b-Can only be used on 2-way valve.

Erie ${ }^{\text {TM }}$ PopTop, 2/3-Way VM SR/NSR Assembly Flow Pattterns

Modulating Spring and Non-Spring Return PopTop, Two-Way and Three-Way VM Assemblies Flow Patterns

Piping

- The three-way is only configured as normally closed. For normally open configuration to the coil, turn the valve around. For proportional valves, set the control action (direct or reverse accordingly).
- The valve should be used in a closed-loop system.
- All valves must be piped so the plug closes against the direction of flow. For two-way valves, flow is from port B to port A. For normally closed three-way valves, B is the service port and A is the bypass port. For normally open three-way valves, A is the service port and B is the bypass port.
- Three-way VM valves must be piped in a mixing configuration, not diverting.

CAUTION: Do not use VM series valves in "open" systems. Excess make-up water may cause damage to the valve.

Follow proper water treatment practices and system procedures. Refer to document F-26080; EN205, Water and Steam System Guidelines.

Note: Normally open actuators are not to be used on three-way valves to achieve normally open configurations. Use a normally closed actuator and pipe as shown in Figure-2.

Figure 1 Two-Way Valve Normally Closed.

Figure 3 Three-Way Valve B Port Piped to Coil Outlet Normally Closed.

Figure 2 Two-Way Valve Normally Open.

Figure 4 Three-Way Valve A Port Piped to Coil Outlet Normally Open

Two-Position Spring Return PopTop Two-Way and Three-Way VT/VS Assemblies Flow Patterns

The VT/VS series are two-position spring return valves. When powered, the actuator moves to the desired position, tensing the spring return system. When power is removed the acutator returns to the normal position.
The VT/VS series two-position spring return valves can be purchased with an optional built-in auxiliary SPDT end switch for interfacing or signaling; for example, zone pump burner control.

Figure 5 Two-Way Valve with Normally Closed Actuator.

Figure 7 Three-Way Valve in Mixing Configuration Normally Closed to the Coil.

Figure 9 Three-Way Valve in Diverting Configuration Normally Closed to the Coil.

Figure 6 Two-Way Valve with Normally Open Actuator.

Figure 8 Three-Way Valve in Mixing Configuration Normally Open to the Coil.

Figure 10 Three-Way Valve in Diverting Configuration Normally Open to the Coil.

Product Description

Schneider Electric's butterfly valve line offers a wide range of two- and three-way sizes, along with electric non-spring return, and spring return actuator models that operate with on/off, floating, or proportional control signals. All assemblies include industry leading butterfly valve features, stainless steel double "D" shafts, nylon 11 coated ductile iron disc machined to provide bubble tight shut off, minimum torque, and longer seat life. The tongue and groove resilient seat design with molded in O-ring eliminates the use of flange gaskets and allows for ease of maintenance or replacement of the resilient seat. These features provide years of optimum performance and reliability.

Applications

Typical applications include data centers, cooling towers, central system shutoff and bypass piping control, thermal storage, and chiller and boiler control. High Performance Butterfly Valves are ideally suited to both high pressure, high temperature, high cycle HVAC applications and mission critical HVAC applications. This includes chiller isolation, cooling tower isolation, change-over systems, large air handler's coil control, bypass and pro-
 cess control applications. With ANSI Class 150 rating, all valves are tested for bubble tight close-off to API 598 standards at maximum rated differential pressure.

Standard Features

2...18" two-way assemblies and 2...16" three-way assemblies

- Chilled/hot water/glycol applications
- EPDM resilient seats with tongue and groove design and build in O-ring seal
- Stainless steel double D stem, requires no pins or screws to connect the disc and stem
- Extended neck design for temperature isolation and ease of insulation installation
- Nylon 11 coated ductile iron disc
- Wide choice of pneumatic and electric actuators and control signals
- Cast iron lug bodies mate with ANSI class 125/150 flanges
- Bubble tight shut off
- Bidirectional Flow
- Series S70 NEMA 4 actuators available in 24 or 120 Vac

High Performance Features

- Double Offset Stem/Disc Design
- Reduced seat wear, zero leakage, and low torque
- Blow-out Proof Stem
- Safety and ease of use
- Energized RTFE Seat
- Zero leakage, self-adjusting for wear and easy field replacement

- Pressure Assisted, but not Pressure Dependent Seat Design
- Optimal performance and sealing at high or low differential pressures
- Adjustable PTFE Packing
- Packing can be adjusted while the valve is in service
- Dead End Rating Equal to Nominal Pressure Rating
- Allows the control valve to function as an isolation valve.

Specify Seven Part Number Fields for the Butterfly Valve Assembly Part Number

Ordering Butterfly Valve Assemblies

[^13]
10. Butterfly Valve Assemblies

Butterfly Valve Actuators \& Assembly Ordering

Table 1: Actuator Codes and Part Numbers ${ }^{\text {a }}$
Refer to the part numbering system illustration on the previous page.

Actuator Code ${ }^{\text {b }}$	On/Off or Floating SR	Actuator Code ${ }^{\text {b }}$	Modulating (2... $10 \mathrm{Vdc}, 4 \ldots .20 \mathrm{~mA}$) SR with the addition of a 500 ohm resistor
556	MA41-7153 (VAx) (On/Off)	556	MS41-7153 (VSx)
556D	2 MA41-7153 (VAx) (On/Off)	556D	2 MS41-7153 (VSx) (Modulating)
556	MF41-7153 (VFx) (Floating)	-	-
556D	2 MF41-7153 (VFx) (Floating)		
Actuator Code ${ }^{\text {b }}$	On/Off or Floating SR with Two SPDT Auxiliary Switches	Actuator Code ${ }^{\text {b }}$	Modulating ($2 \ldots 10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{~mA}$) SR with the addition of a 500 ohm resistor with Two Auxiliary Switches
556	1 MA41-7153-502 (VAxS) (On/Off)	556	MS41-7153-502 (VSxS) (Modulated)
556D	1 MA41-7153 \& 1 MA41-7153-502 (VAxS) (On/Off)	556D	1 MS41-7153 \& 1 MS41-7153-502 (VSxS) (Modulated)
556	1 MF41-7153-502 (VFxS) (Floating)	-	-
556D	1 MF41-7153 \& 1 MF41-7153-502 (VFxS) (Floating)		
Actuator Code ${ }^{\text {b }}$	On/Off or Floating NSR	Actuator Code ${ }^{\text {b }}$	Modulating (0... $10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{~mA})$ NSR
E24	NR-2216-521 (VFx)	E24	NR-2216-541 (VSx)
E25	NR-2224-521 (VFx)	E25	NR-2224-541 (VSx)
E25D	2 NR-2224-521 (VFx)	E25D	2 NR-2224-541 (VSx)
Actuator Code ${ }^{\text {b }}$	On/Off or Floating NSR with Two SPDT Auxiliary Switches	Actuator Code ${ }^{\text {b }}$	Modulating ($0 . . .10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{~mA}$) NSR with Two SPDT Auxiliary Switches
E24	NR-2216-522 (VFxS)	E24	NR-2216-542 (VSxS)
E25	NR-2224-522 (VFxS)	E25	NR-2224-542 (VSxS)
E25D	1 NR-2224-521 \& 1 NR-2224-522 (VFxS)	E25D	1 NR-2224-541 \& 1 NR-2224-542 (VSxS)
Actuator Code ${ }^{\text {c }}$	On/Off NSR with Two SPDT Auxiliary Switches and Heater ${ }^{\text {C }}$	Actuator Code ${ }^{\text {c }}$	Modulating ($0 . . .10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{~mA}$) NSR with Two SPDT Auxiliary Switches and Heater ${ }^{\text {C }}$
E10	S70-120-0061-H (VAxS)	E12	S70-120-0061-SV (VSxS)
E20	S70-120-0121-H (VAxS)	E22	S70-120-0121-SV (VSxS)
E30	S70-120-0201-H (VAxS)	E32	S70-120-0201-SV (VSxS)
E40	S70-120-0301-H (VAxS)	E42	S70-120-0301-SV (VSxS)
E50	S70-120-0501-H (VAxS)	E52	S70-120-0501-SV (VSxS)
$\begin{aligned} & \text { E60 } \\ & \text { (120 Vac only) } \end{aligned}$	S70-120-0651-H (VAxS)	E62 (120 Vac only)	S70-120-0651-SV (VSxS)
E70 (120 Vac only)	S70-120-1300-H (VAxS)	E72 (120 Vac only)	S70-120-1300-SV (VSxS)
E80 (120 Vac only)	S70-120-1800-H (VAxS)	$\begin{aligned} & \text { E82 } \\ & \text { (120 Vac only) } \end{aligned}$	S70-120-1800-SV (VSxS)

[^14]
10. Butterfly Valve Assemblies

Table 2: 2-Way and 3-Way Valve Assemblies

a. $\quad \mathrm{D}=$ Dual actuators
b. $\quad \mathrm{SR}=$ Spring return actuator available as configured for normally open and normally closed butterfly valves.
c. \quad NSR $=$ Non-spring return actuator.
d. E1x through E5x available as 24 Vac powered: change actuator code E to "F" and 120 to 24, e.g. E10 to F10, then "S70-24-0061-H"
e. 120 Vac only: E6x, E7x, E8x.

Table 3: Actuator Features

Actuator Family	Spring Return	Available Input Signals	Available Options
Schneider Electric SmartX SR MX41-7153	Yes	24 Vac. Two Position, Floating, 2...10 Vdc, 4...20 mA with the addi- tion of a 500 ohm resistor, Proportional	Auxiliary Switch
Direct Coupled NSR NR-22xx	No	24 Vac. Three Wire Two Position, Floating, $0 \ldots 10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{~mA}$, Proportional	Auxiliary Switch
NEMA 4 with Hand Wheel NSR S70-xxx-	No	120 Vac. or 24 Vac. Three Wire Two Position, Floating, $0 \ldots .10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{~mA}$, Proportional	Auxiliary Switch (standard) and Heater (standard)

Specifications
Actuator Code 556, 556D (M×41-7153 Series)

Power Loss Mode	Spring return
Control Signal	On/off, floating, or proportional $2 \ldots 10 \mathrm{Vdc} ., 5 \ldots 20 \mathrm{~mA}$ with the addition of a 500 ohm resistor
Power Requirements	$24 \mathrm{Vac} \pm 20 \%$,
Environment	22...30 Vdc, 9.7 VA.
Ambient Temperatures	NEMA 2
Regulatory Compliance	c-UL-us LISTED mark and CE mark.
Manual Operator	Provided on single mount units.
Option	Auxiliary switches
	7 A @250 Vac.

SmartX Spring Return
M 4 41-7153 Actuator

Model Number	Actuator Code	Power	Input Signal	Feedback	Power Loss Mode	Optional Accessories
MA41-7153	556 or 556 d $^{\text {b }}$	24 Vac	On/off	-	SR	-
MF41-7153			Floating			
MS41-7153			$2 . .10 \mathrm{Vdc}$	$2 \ldots 10 \mathrm{Vdc}$		
MA41-7153-502			On/off	-		Two SPDT Auxiliary Switches ${ }^{\text {a }}$
MF41-7153-502			Floating			
MS41-7153-502			$2 \ldots 10 \mathrm{Vdc}$	$2 \ldots 10 \mathrm{Vdc}$		

a - Optional. The first part number field of the valve assembly must call out $V x x S-6 x x x$. Note models with 556 D actuator code that require auxiliary switch option will ship with one actuator without switches and one actuator with auxiliary switches.
b-556D = Dual Actuators

NR-22xx 2"...6" 2 and 3-Way NSR Actuators

Model Number	Actuator Code	Power	Input Signal	Feedback	Power Loss Mode	Optional Accessories
NR-2216-521	E24	24 Vac			NSR	-
NR-2216-522			floating	-		Two SPDT Auxiliary Switches ${ }^{\text {a }}$
NR-2216-541			$0 \ldots 10 \mathrm{Vdc},$	0. 10 Vdc		-
NR-2216-542			$4 \ldots 20 \mathrm{~mA}$			Two SPDT Auxiliary Switches ${ }^{\text {a }}$
NR-2224-521	E25 or E25D ${ }^{\text {b }}$		On/off, floating	-		-
NR-2224-522						Two SPDT Auxiliary Switches ${ }^{\text {a }}$
NR-2224-541			$\begin{gathered} 0 \ldots 10 \mathrm{Vdc}, \\ 4 \ldots . .20 \mathrm{~mA} \end{gathered}$	$0 . .10 \mathrm{Vdc}$		-
NR-2224-542						Two SPDT Auxiliary Switches ${ }^{\text {a }}$

a - Optional. The first part number field of the valve assembly must call out VxxS-6xxx. Note models with E25D actuator code that require auxiliary switch option will ship with one actuator without switches and one actuator with auxiliary switches.
b - E25D = Dual Actuators
Specifications
Actuator Code E24, E25, E25D (NR-2000 Series)

Power Loss Mode	NSR		
Control Signal	On/off, floating, or $2 \ldots 10 \mathrm{Vdc}$, 4... 20 mA .	Ambient Temperatures	$-4 \ldots 122{ }^{\circ} \mathrm{F}(-2 \ldots 50$
		Regulatory Compliance	UL, CSA
Power Requirements	20 to $30 \mathrm{Vac}, 24 \mathrm{Vdc} \pm 10 \%$	Optional Auxiliary Switch	2 SPDT 24 Vac 1.5 A inductive
	NR-2216 6.5VA, NR-2224 7.5VA		resistive, 35 VA per sw
Environment	NEMA 2.	Manual Operator	Provided on all mod
F-27855-11		Life Is Un	Schneider \int Electric

Non-Spring Return S70-xxxx
Actuator

Table 6: S70 NSR Actuators for 2"...18" 2-Way and 2"...16" 3-Way Valves

Model Number	Actuator Code	Power ${ }^{\text {a }}$	Input Signal	Feedback	Power Loss Mode	Optional Accessories
S70-120-0061-H (VAxS)	E10	$\begin{gathered} \mathrm{E}=120 \mathrm{Vac} \\ \mathrm{~F}=24 \mathrm{Vac} \end{gathered}$	On/off, floating	-	NSR	Two SPDT Auxiliary Switches and heater (standard)
S70-120-0121-H (VAxS)	E20					
S70-120-0201-H (VAxS)	E30					
S70-120-0301-H (VAxS)	E40					
S70-120-0501-H (VAxS)	E50					
S70-120-0651-H (VAxS)	E60 (120 Vac Only)					
S70-120-1300-H (VAxS)	E70 (120 Vac Only)					
S70-120-1800-H (VAxS)	E80 (120 Vac Only)					
S70-120-0061-SV (VSxS)	E12		$0 . .10 \mathrm{Vdc}$, 4... 20 mA	$\begin{aligned} & 0 \ldots 10 \mathrm{Vdc}, \\ & 4 \ldots . .20 \mathrm{~mA} \end{aligned}$		
S70-120-0121-SV (VSxS)	E22					
S70-120-0201-SV (VSxS)	E32					
S70-120-0301-SV (VSxS)	E42					
S70-120-0501-SV (VSxS)	E52					
S70-120-0651-SV (VSxS)	E62 (120 Vac Only)					
S70-120-1300-SVH (VSxS)	E72 (120 Vac Only)					
S70-120-1800-SVH (VSxS)	E82 (120 Vac Only)					

a. For 24 Vac valve assemblies use F in place of E in the third field (VAFS-6200-F10-L-11). E10 becomes F10 for 24 Vac powered. (F10 actuator code=S70-24-0061-H actuator) For additional voltages contact customer service.

Specifications

Actuator Code (70 Series)

Power Loss Mode	Non-spring return.
Control Signal	
Actuator Code	Ex0 (120 Vac) or Fx0 (24 Vac)
	On/off, floating
Actuator Code	Ex2 (120 Vac) or Fx2 (24 Vac)
	Factory configured for
	$4 \ldots 20 \mathrm{~mA}$ with a 250 W
	input impedance, field
	configrable for 0... 10 Vdc or
	2... 10 Vdc .
Power Requirements	120 Vac or $24 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$.
E1x/F1x	$1.5^{\text {a }}$
E2x/F2x,E3x/F3x	$2.1{ }^{\text {a }}$
E4x/F4x,E5x/F5x,E6x	$3.0{ }^{\text {a }}$
Environment	NEMA 4.

Ambient Temperatures	$\begin{gathered} -40 \ldots .150^{\circ} \mathrm{F} \\ \left(-40 \ldots 60^{\circ} \mathrm{C}\right) \end{gathered}$
Regulatory Compliance	c-UL-us LISTED mark and CE mark
Standard Auxiliary Switch	(Included) 10 A resistive at $125 / 250 \mathrm{Vac}$, $1 / 2 \mathrm{~A}$ at 125 Vdc .
Heater	15 W .
Manual Operator with Disconnect	Hand wheel with power disconnect provided on all S70 actuator models.

10. Butterfly Valve Assemblies

2.5"...18" 2-Way High Performance Assemblies

Product Description

Schneider Electric's High Performance Butterfly Valves are ideally suited to both high pressure, high temperature, high cycle HVAC applications and mission critical HVAC applications. This includes chiller isolation, cooling tower isolation, change-over systems, large air handler's coil control, bypass and process control applications.
With ANSI Class 150 rating, all valves are tested for bubble tight close-off to API 598 standards at maximum rated differential pressure.

Features

- Double Offset Stem/Disc Design
- Reduced seat wear, zero leakage, and low torque
- Blow-out Proof Stem
- Safety and ease of use
- Energized RTFE Seat
- Zero leakage, self-adjusting for wear and easy field replacement
- Pressure Assisted, but not Pressure Dependent Seat Design

Specifications

Service	Hot Water, Chilled Water, Condenser Water, Steam
Fluid Temperature Limits	$-40 \ldots 500^{\circ} \mathrm{F}$
Max Steam Pressure	On/Off 150 PSI Proportional 50 PSI
Sizes	$2.5^{\prime \prime} \ldots 18^{\prime \prime}$
Flow Characteristic	Modified Equal Percentage
Leakage	Bubble Tight

- Optimal performance and sealing at high or low differential pressures
- Adjustable PTFE Packing
- Packing can be adjusted while the valve is in service
- Dead End Rating Equal to Nominal Pressure Rating
- Allows the control valve to function as an isolation valve.

Materials	Carbon Steel
Body	$17-4$ Stainless Steel
Stem	316 Stainless Steel
Disc	RTFE
Seat	

2-Way High Performance Butterfly Valve Assemblies With S70 Series NSR Actuator and NEMA 4, Hand Wheel with Two SPDT Auxiliary Switches and Heater

Model Number		Power ${ }^{\text {a }}$	Valve Size	Close Off PSI	Cv at 90°
On/Off	Modulating				
VAFS-6200-E10-H1-12	VSFS-6200-E12-H1-12	$\begin{gathered} \mathrm{E}=120 \mathrm{Vac} \\ \mathrm{~F}=24 \mathrm{Vac} \end{gathered}$	2.5 "	285 psi	160
VAFS-6200-E10-H1-13	VSFS-6200-E12-H1-13		3"		185
VAFS-6200-E10-H1-14	VSFS-6200-E12-H1-14		4"		375
VAFS-6200-E20-H1-15	VSFS-6200-E22-H1-15		5"		790
VAFS-6200-E20-H1-16	VSFS-6200-E22-H1-16		$6 "$		1350
VAFS-6200-E30-H1-17	VSFS-6200-E32-H1-17		8"		2800
VAFS-6200-E40-H1-18	VSFS-6200-E42-H1-18		10"		4300
VAFS-6200-E50-H1-19	VSFS-6200-E52-H1-19		$12^{\prime \prime}$		6650
VAFS-6200-E60-H1-20 ${ }^{\text {b }}$	VSFS-6200-E62-H1-20 ${ }^{\text {b }}$		14"		7650
VAFS-6200-E70-H1-21 ${ }^{\text {b }}$	VSFS-6200-E72-H1-21 ${ }^{\text {b }}$		$16^{\prime \prime}$		9800
VAFS-6200-E80-H1-22 ${ }^{\text {b }}$	VSFS-6200-E82-H1-22 ${ }^{\text {b }}$		18"		10500

[^15]
10. Butterfly Valve Assemblies

2-Way High Performance Butterfly Actuator Codes

Actuator Code Table VxxS-6200/630x-Exx/Fxx -L-xx

Actuator Codes	Model Prefix	Actuator Model
E10	VAxS	S70-0051-H
E20		S70-0121-H
E30		S70-0201-H
E40		S70-0301-H
E50		S70-0501-H
E60		S70-0651-H
E12	VSxS	S70-0051-SVH
E22		S70-0121-SVH
E32		S70-0201-SVH
E42		S70-0301-SVH
E52		S70-0501-SVH
E62		S70-0651-SVH

Actuator Code Table
VxxS-6200/630x-Exx/Fxx-L-xx

Actuator Codes	Model Prefix	Actuator Model
F10	VAxS	S70-24-0051-H
F20		S70-24-0121-H
F30		S70-24-0201-H
F40		S70-24-0301-H
F50		S70-24-0501-H
F60		S70-24-0651-H
F12	VSxS	S70-24-0051-SVH
F22		S70-24-0121-SVH
F32		S70-24-0201-SVH
F42		S70-24-0301-SVH
F52		S70-24-0501-SVH

E Series: 120 Vac, modulated, NEMA4, 2 SPDT aux switch, manual override F Series: 24 Vac, modulated, NEMA4, 2 SPDT aux switch, manual override

Flow Type	Equal \% bidirectional.	
	Body	Polyester coated cast iron, ASTM A126 Class B lug. Mates with ANSI $125 / 150$ flanges.
	Seat	EPDM tongue and groove seat and molded O-ring flange seal. Peroxide cured.
Material		Stainless steel double D stem.
	Stem	Self adjusting double U cup.
	Sisc Seals	Ductile iron nylon 11 coated disc.
Fluid Temperatures	-40 to $250^{\circ} \mathrm{F}\left(-40\right.$ to $\left.121^{\circ} \mathrm{C}\right)$.	
Close-Off Rating	ANSI VI Bubble tight.	
Application	Chilled or hot water up to 60% glycol.	

Two-Way

Size in.	Cv $\left(\mathbf{K}_{\text {vs }}\right)$ @ 90	Close-Off Pressure psi (kPa)	Two Position	Floating	Proportional	Voltage Vac
2	$144(125)$	$175(1207)$	VAF-6220-556-L-11	VFF-6220-556-L-11	VSF-6220-556-L-11	24
2.5	$282(244)$	$175(1207)$	VAF-6220-556-L-12	VFF-6220-556-L-12	VSF-6220-556-L-12	24
3	$461(399)$	$175(1207)$	VAF-6220-556D-L-13	VFF-6220-556D-L-13	VSF-6220-556D-L-13	24
4	$841(727)$	$50(345)$	VAU-6220-556D-L-14	VFF-6220-556D-L-14	VSF-6220-556D-L-14	24

Actuator Code Table.

VXXX-6220-556x-L-XX \begin{tabular}{|l|l|l|l|}

\hline | Actuator |
| :---: |
| Codes | \& | Model |
| :---: |
| Prefix | \& Actuator Model \& \multicolumn{1}{c|}{ Description }

\hline 556^{b} \& VAxx \& MA41-7153 \& 24 Vac, on/off, SR

\hline 556^{bc} \& VAxS \& MA41-7153-502 \& | 24 Vac, on/off, SR, 2 SPDT aux |
| :--- |
| switches |

\hline 556^{b} \& VFxx \& MF41-7153 \& 24 Vac, Floating, SR

\hline 556^{bc} \& VFxS \& MF41-7153-502 \& | 24 Vac, Floating, SR, 2 SPDT aux |
| :--- |
| switches |

\hline 556^{b} \& VSxx \& MS41-7153 \& 24 Vac, Modulating, SR

\hline 556^{bc} \& VSxS \& MS41-7153-502 \& | 24 Vac, on/off, SR, 2 SPDT aux |
| :--- |
| switches |

\hline
\end{tabular}

a For optional two SPDT auxiliary switch models the letter " S " must be added to the model prefix field. e.g. VxxS
${ }^{\mathrm{b}} \mathrm{D}=$ Dual mounting.
${ }^{c}$ Dual mounted application. One $\mathrm{Mx41-7153}$ and one $\mathrm{Mx41-7153-502}$ are supplied.

Flow Type	Equal \% bidirectional.	
	Body	Polyester coated cast iron, ASTM A126 Class B lug. Mates with ANSI 125/150 flanges.
Seat	EPDM tongue and groove seat and molded O-ring flange seal. Peroxide cured.	
	Stem	Stainless steel double D stem.
	Stem Seals	Self adjusting double U cup.
\quad Disc	Ductile iron nylon 11 coated disc.	
Fluid Temperatures	-40 to $250^{\circ} \mathrm{F}\left(-40\right.$ to $\left.121^{\circ} \mathrm{C}\right)$.	
Close-Off Rating	ANSI VI Bubble tight.	
Application	Chilled or hot water up to 60% glycol.	

Two-Way Normally Open Assemblies

Size in.	Cv $\left(\mathbf{K}_{\mathbf{v s}}\right)$ $@ 90^{\circ}$	Close-Off Pressure psi (kPa)	Two Position	Floating	Proportional	Voltage Vac
2	$144(125)$	$175(1207)$	VAF-6210-556-L-11	VFF-6210-556-L-11	VSF-6210-556-L-11	24
2.5	$282(244)$	$175(1207)$	VAF-6210-556-L-12	VFF-6210-556-L-12	VSF-6210-556-L-12	24
3	$461(399)$	$175(1207)$	VAF-6210-556D-L-13	VFF-6210-556D-L-13	VSF-6210-556D-L-13	24
4	$841(727)$	$50(345)$	VAU-6210-556D-L-14	VFU-6210-556D-L-14	VSU-6210-556D-L-14	24

Actuator Code Table.

VXXX-6210-556x-L-XX \begin{tabular}{|c|c|l|l|}

\hline | Actuator |
| :---: |
| Codes | \& | Model |
| :---: |
| Prefix | \& \multicolumn{1}{|c|}{ Actuator Model } \& \multicolumn{1}{c|}{ Description }

\hline 556^{b} \& VAxx \& MA41-7153 \& 24vac, on/off, SR

\hline 556^{bc} \& VAxS \& MA41-7153-502 \& | 24 vac, on/off, SR, 2-SPDT |
| :--- |
| aux switches |

\hline 556^{b} \& VFxx \& MF41-7153 \& 24 vac , Floating, SR

\hline 556^{bc} \& VFxS \& MF41-7153-502 \& | 24vac, Floating, SR, 2-SPDT |
| :--- |
| aux switches |

\hline 556^{b} \& VSxx \& MS41-7153 \& 24vac, modulating, SR

\hline 556^{bc} \& VSxS \& MS41-7153-502 \& | 24vac, on/off, SR, 2-SPDT |
| :--- |
| aux switches |

\hline
\end{tabular}

[^16]

Flow Type		Equal \% bidirectional.
Material	Body	Polyester coated cast iron, ASTM A126 Class B lug Mates with ANSI 125/150 flanges.
	Seat	EPDM tongue and groove seat and molded O-ring flange seal. Peroxide cured.
	Stem	Stainless steel double D stem.
	Stem Seals	Self adjusting double U cup.
	Disc	Ductile iron nylon 11 coated disc.
Fluid Temperatures		-40 to $250^{\circ} \mathrm{F}\left(-40\right.$ to $121^{\circ} \mathrm{C}$).
Close-Off Rating		ANSI VI Bubble tight.
Application		Chilled or hot water up to 60\% glycol.

Size in.	$\begin{gathered} \mathrm{Cv} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \\ @ 90^{\circ} \end{gathered}$	Close-Off Pressure psi (kPa)	Two Position or Floating	Proportional	Voltage Vac
2	144 (125)	175 (1207)	VFF-6200-E24-L-11	VSF-6200-E24-L-11	24
2.5	282 (244)	175 (1207)	VFF-6200-E24-L-12	VSF-6200-E24-L-12	24
3	461 (399)	175 (1207)	VFF-6200-E25-L-13	VSF-6200-E25-L-13	24
4	841 (727)	175 (1207)	VFF-6200-E25D-L-14	VSF-6200-E25D-L-14	24
		50 (345)	VFU-6200-E25-L-14	VSU-6200-E25-L-14	24
5	$\begin{gathered} \hline 1376 \\ (1190) \\ \hline \end{gathered}$		VFU-6200-E25-L-15	VSU-6200-E25-L-15	24
6	$\begin{gathered} \hline 1850 \\ (1600) \end{gathered}$		VFU-6200-E25D-L-16	VSU-6200-E25D-L-16	24

Actuator Code Table.

Vxxx-6200-E2xx-L-xx	Actuator Codes	Model Prefix ${ }^{\text {a }}$	Actuator Model	Description
	E24	VFxx	NR-2216-521	24 Vac, Floating, on/off, NSR
	E24	VFxS	NR-2216-522	24 Vac, Floating, on/off, NSR, 2 SPDT aux Switch
	E24	VSxx	NR-2216-541	24 Vac, Modulated, NSR
	E24	VSxS	NR-2216-542	24 Vac, Modulated, NSR, 2 SPDT aux Switch
	E25 ${ }^{\text {b }}$	VFxx	NR-2224-521	24 Vac, Floating, on/off, NSR
	E25 ${ }^{\text {bc }}$	VFxS	NR-2224-522	24 Vac, Floating, on/off, NSR, 2 SPDT aux Switch
	E25 ${ }^{\text {b }}$	VSxx	NR-2224-541	24 Vac, Modulated, NSR
	E25 ${ }^{\text {bc }}$	VSxS	NR-2224-542	24 Vac, Modulated, NSR, 2 SPDT aux Switch

[^17]

Flow Type	
	Body
	Seat
Material	
	Stem
	Stem Seals
	Disc
Fluid Temperatures	
Close-Off Rating	
Application	

Equal \% bidirectional.
Polyester coated cast iron, ASTM A126 Class B lug. Mates with ANSI 125/150 flanges.
EPDM tongue and groove seat and molded O-ring flange seal. Peroxide cured.
Stainless steel double D stem.
Self adjusting double U cup.
Ductile iron nylon 11 coated disc.
-40 to $250^{\circ} \mathrm{F}\left(-40\right.$ to $121^{\circ} \mathrm{C}$).
ANSI VI Bubble tight.
Chilled or hot water up to 60% glycol.

$\begin{gathered} \text { Size } \\ \text { in. } \end{gathered}$	$\begin{gathered} \mathrm{Cv} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \\ @ 90^{\circ} \end{gathered}$	Close-Off Pressure psi (kPa)	Two Position*	Proportional	Voltage Vac
2	144 (125)	175 (1207)	VAFS-6200-E10-L-11	VSFS-6200-E12-L-11	120
2.5	282 (244)	175 (1207)	VAFS-6200-E10-L-12	VSFS-6200-E12-L-12	120
3	461 (399)	175 (1207)	VAFS-6200-E10-L-13	VSFS-6200-E12-L-13	120
4	841 (727)	50 (345)	VAUS-6200-E10-L-14	VSUS-6200-E12-L-14	120
		175 (1207)	VAFS-6200-E10-L-14	VSFS-6200-E12-L-14	120
5	1376 (1190)	50 (345)	VAUS-6200-E10-L-15	VSUS-6200-E12-L-15	120
		175 (1207)	VAFS-6200-E20-L-15	VSFS-6200-E22-L-15	120
6	1850 (1600)	50 (345)	VAUS-6200-E20-L-16	VSUS-6200-E22-L-16	120
		175 (1207)	VAFS-6200-E20-L-16	VSFS-6200-E22-L-16	120
8	3316 (2868)	50 (345)	VAUS-6200-E20-L-17	VSUS-6200-E22-L-17	120
		175 (1207)	VAFS-6200-E30-L-17	VSFS-6200-E32-L-17	120
10	5430 (4697)	50 (345)	VAUS-6200-E30-L-18	VSUS-6200-E32-L-18	120
		175 (1207)	VAFS-6200-E40-L-18	VSFS-6200-E42-L-18	120
12	8077 (6987)	50 (345)	VAUS-6200-E40-L-19	VSUS-6200-E42-L-19	120
		175 (1207)	VAFS-6200-E50-L-19	VSFS-6200-E52-L-19	120
14	10538 (9115)	50 (345)	VAUS-6200-E50-L-20	VSUS-6200-E52-L-20	120
		175 (1207)	VAFS-6200-E60-L-20	VSFS-6200-E62-L-20	120
16	13966 (12081)	50 (345)	VAUS-6200-E60-L-21	VSUS-6200-E62-L-21	120
18	17214 (14890)	50 (345)	VAUS-6200-E60-L-22	VSUS-6200-E62-L-22	120

[^18]

Flow Type	Equal \% linear bidirectional. Mixing or diverting configurations.
Body	Polyester coated cast iron, ASTM A126 Class B lug. Mates with ANSI 125/150 flanges.
Material Seat	EPDM tongue and groove seat and molded O-ring flange seal. Peroxide cured.
Stem	Stainless steel double D stem.
Stem Seals	Self adjusting double U cup.
Disc	Ductile iron nylon 11 coated disc.
Fluid Temperatures	-40 to $250^{\circ} \mathrm{F}\left(-40\right.$ to $\left.121^{\circ} \mathrm{C}\right)$.
Close-Off Rating	ANSI VI Bubble tight.
Application	Chilled or hot water up to 60\% glycol.

Size in.	Cv $\left(\right.$ K $\left._{\text {vs }}\right)$ @ 90	Close-Off Pressure psi (kPa)	Two Position			
a	Floating $^{\text {a }}$	Proportional $^{\text {a }}$	Voltage Vac			
2	$144(125)$	$175(1207)$	VAF-632x-556-L-11	VFF-632x-556-L-11	VSF-632x-556-L-11	24
2.5	$282(244)$	$175(1207)$	VAF-632x-556D-L-12	VFF-632x-556D-L-12	VSF-632x-556D-L-12	24
3	$461(399)$	$175(1207)$	VAF-632x-556D-L-13	VFF-632x-556D-L-13	VSF-632x-556D-L-13	24
4	$841(727)$	$50(345)$	VAU-632x-556D-L-14	VFU-632x-556D-L-14	VSU-632x-556D-L-14	24

a-Select 1,2 or C for the " x ".
1 = Actuator is mounted on the main valve at " A " and is NC.
$2=$ Actuator is mounted on the main valve at " B " and is NC. The linked valve for 1 and 2 is " C ".

C = Configurable option at time of ordering in iPortal.

Actuator Code Table.

Vxxx-632x-556x-L-xx	Actuator Codes	Model Prefix ${ }^{\text {a }}$	Actuator Model	Description
	$556{ }^{\text {b }}$	VAxx	MA41-7153	24 Vac , on/off, SR
	$556^{\text {bc }}$	VAxS	MA41-7153-502	24 Vac, on/off, SR, 2 SPDT aux switches
	$556{ }^{\text {b }}$	VFxx	MF41-7153	24 Vac , Floating, SR
	$556^{\text {bc }}$	VFxS	MF41-7153-502	24 Vac, Floating, SR, 2 SPDT aux switches
	$556{ }^{\text {b }}$	VSxx	MS41-7153	24 Vac, Modulating, SR
	$556{ }^{\text {bc }}$	VSxS	MS41-7153-502	24 Vac, on/off, SR, 2 SPDT aux switches

a-For optional two SPDT auxiliary switch models the letter "S" must be added to the model pretix tield. e.g. VxxS $b-D=$ Dual mounting.
c-Dual mounted application. One Mx41-7153 and one Mx41-7153-502 are supplied.

Flow Type	Equal \% linear bidirectional. Mixing or diverting configurations.
Body	Polyester coated cast iron, ASTM A126 Class B lug Mates with ANSI 125/150 flanges.
Material Seat	EPDM tongue and groove seat and molded O-ring flange seal. Peroxide cured.
Stem	Stainless steel double D stem.
Stem Seals	Self adjusting double U cup.
Disc	Ductile iron nylon 11 coated disc.
Fluid Temperatures	-40 to $250^{\circ} \mathrm{F}$ (-40 to $121^{\circ} \mathrm{C}$).
Close-Off Rating	ANSI VI Bubble tight.
Application	Chilled or hot water up to 60\% glycol.

Size in.	Cv $\left(\mathbf{K}_{\text {vs }}\right)$ @ 90	Close-Off Pressure psi (kPa)	Two Position	Floating ${ }^{\text {a }}$	Proportional ${ }^{\text {a }}$	Voltage Vac
2	$144(125)$	$175(1207)$	VAF-631x-556-L-11	VFF-631x-556-L-11	VSF-631x-556-L-11	24
2.5	$282(244)$	$175(1207)$	VAF-631x-556D-L-12	VFF-631x-556D-L-12	VSF-631x-556D-L-12	24
3	$461(399)$	$175(1207)$	VAF-631x-556D-L-13	VFF-631x-556D-L-13	VSF-631x-556D-L-13	24
4	$841(727)$	$50(345)$	VAU-631x-556D-L-14	VFU-631x-556D-L-14	VSU-631x-556D-L-14	24

a Select 7 or 8 for the " x ".
8 = Actuator is mounted on the main valve at " A " and is NO.
7 = Actuator is mounted on the main valve at " B " and is NO.
The linked valve for 7 and 8 is " C ".

$\mathrm{C}=$ Configurable option at time of ordering in iPortal.

Actuator Code Table.

Vxxx-631x-556x-L-xx	Actuator Codes	Model Prefix ${ }^{\text {a }}$	Actuator Model	Description
	$556{ }^{\text {b }}$	VAxx	MA41-7153	24 Vac , on/off, SR
	$556{ }^{\text {bc }}$	VAxS	MA41-7153-502	24 Vac, on/off, SR, 2 SPDT aux switches
	$556{ }^{\text {b }}$	VFxx	MF41-7153	24 Vac , Floating, SR
	$556{ }^{\text {bc }}$	VFxS	MF41-7153-502	24 Vac, Floating, SR, 2 SPDT aux switches
	$556{ }^{\text {b }}$	VSxx	MS41-7153	24 vac, Modulating, SR
	$556{ }^{\text {bc }}$	VSxS	MS41-7153-502	24 Vac, on/off, SR, 2 SPDT aux switches

${ }^{\text {a }}$ For optional two SPDT auxiliary switch models the letter "S" must be added to the model prefix field. e.g.: VxxS
${ }^{b} \mathrm{D}=$ Dual mounting.
${ }^{c}$ Dual mounted application. One Mx41-7153 and one Mx41-7153-502 are supplied.

Flow Type		Equal \% linear bidirectional. Mixing or divering configuration.
Material	Body	Polyester coated cast iron, ASTM A126 Class B lug Mates with ANSI 125/150 flanges.
	Seat	EPDM tongue and groove seat and molded O-ring flange seal. Peroxide cured.
	Stem	Stainless steel double D stem.
	Stem Seals	Self adjusting double U cup.
	Disc	Ductile iron nylon 11 coated disc.
Fluid Temperatures		-40 to $250^{\circ} \mathrm{F}\left(-40\right.$ to $121^{\circ} \mathrm{C}$).
Close-Off Rating		ANSI VI Bubble tight.
Application		Chilled or hot water up to 60\% glycol.

Size in.	$\begin{gathered} \hline \mathrm{Cv} \\ \left(\mathrm{~K}_{\mathrm{vs}}\right) \\ @ 90^{\circ} \end{gathered}$	Close-Off Pressure psi (kPa)	On/Off or Floating ${ }^{\text {a }}$	Proportional ${ }^{\text {a }}$	Voltage Vac
2	144 (125)	175 (1207)	VFF-630x-E24-L-11	VSF-630x-E24-L-11	24
2.5	282 (244)	175 (1207)	VFF-630x-E25-L-12	VSF-630x-E25-L-12	24
3	461 (399)	175 (1207)	VFF-630x-E25-L-13	VSF-630x-E25-L-13	24
4	841 (727)	175 (1207)	VFF-630x-E25D-L-14	VSF-630x-E25D-L-14	24
		50 (345)	VFU-630x-E25-L-14	VSU-630x-E25-L-14	24
5	1376 (1190)		VFU-630x-E25D-L-15	VSU-630x-E25D-L-15	24
6	1850 (1600)		VFU-630x-E25D-L-16	VSU-630x-E25D-L-16	24

a-Select 1 or 2 for the " x ".
1 = Actuator is mounted on the main valve at " A " and is NC.
$2=$ Actuator is mounted on the main valve at " B " and is NC.
The linked valve for 1 and 2 is " C ".

$\mathrm{C}=$ Configurable option at time of ordering in iPortal.

Actuator Code Table.

$\text { Vxxx-E } \underset{\longrightarrow}{2 x x-L-x x}$	Actuator Codes	Model Prefix ${ }^{\text {a }}$	Actuator Model	Description
	E24	VFxx	NR-2216-521	24 Vac, Floating, on/off, NSR
	E24	VFxS	NR-2216-522	24 Vac, Floating, on/off, NSR, 2 SPDT aux switch
	E24	VSxx	NR-2216-541	$24 \mathrm{Vac}, \mathrm{Modulated}$,
	E24	VSxS	NR-2216-542	24 Vac, Modulated, NSR, 2 SPDT aux switch
	E25 ${ }^{\text {b }}$	VFxx	NR-2224-521	24 Vac , Floating, on/off, NSR
	E25 ${ }^{\text {bc }}$	VFxS	NR-2224-522	24 Vac, Floating, on/off, NSR, 2 SPDT aux switch
	E25 ${ }^{\text {b }}$	VSxx	NR-2224-541	24 Vac, Modulated, NSR
	E25 ${ }^{\text {bc }}$	VSxS	NR-2224-542	24 Vac, Modulated, NSR, 2 SPDT aux switch

a-For optional two SPDT auxiliary switch models the letter " S " must be added to the model prefix field. e.g. VxxS b-D = Dual mounting (E25D).
c-Dual mounted application. One NR-22xx-5x1 and one NR-22xx-5x2 are supplied.

Eco Ftruxure"

苗

Modern, digital campus enhances employee experience and delivers efficiency

The Dunes, Société Générale -
Fontenay-sous-Bois, France
Leading financial services group creates a responsive workplace of the future with EcoStruxure ${ }^{\text {TM }}$ smart office technology.

11. Pressure Independent Balancing and Control Valves and Actuators

Product Description

The SmartX PIBCV range is a comprehensive selection of automatic balancing and control valves that provide flow limitation, with full control authority over hydronic regulation.
Automatic balancing within PIBCV valves provide stable flow regulation regardless of pressure fluctuations in the system and all valves have an adjustable flow limitation set point. The control valve portion of the PIBCV further regulates the water/ glycol flow from close-off up to the maximum flow limit setting.
Typical applications are temperature control of chillers, airhandling units, heat exchanges and terminal units such as fan coils, induction units and radiant panels.

Features

- Reduced Energy Consumption
- Pressure independence ensures no overflow of water/ glycol through the valve. Limiting water/glycol flow to the design load of the coil has a significant effect on energy efficiency since systems operate for the majority of the time on a partial load.
- The overflow of water/glycol causes a degradation in heat transfer at the heat exchanger. Uncontrolled overflow of water/glycol beyond the design flow of the heat exchanger is an extremely wasteful and inefficient use of heat.
- The correct and maximum design flow ensures a high
differential in supply and return temperatures to provide high operational efficiency of the chiller or boiler.
- Improved Comfort
- The SmartX PIBCV valves are not affected by other valves in the system that may be opening and closing throughout the day or other piping system disturbances providing more constant, comfortable, room temperatures.
- Reduced Pumping Costs
- A reduction in overflows through the network reduces pumping costs. A smaller pump head and equipment is required compared to traditional configurations.
- Reduced Installation Costs
- Only one valve needs to be installed rather than two or three since the SmartX PIBCV covers the pressure balancing, flow limitation and control modulation.
- Easy and Quick Commissioning
- SmartX PIBCV setup time is significantly reduced with a simple and accurate flow setting procedure without the need for flow charts, calculations or measuring equipment.
- Improved Reliability
- Improved mechanical equipment reliability from reduced actuator movements.

11. Pressure Independent Balancing and Control Valves and Actuators

Summary and Applications

SmartX PIBCV Summary

SmartX PIBCV valves and Actuators can be used with actuators for pressure independent balancing and control applications or without actuators for automatic flow limiting balance applications.
PIBCVs immediately react to all changes in system pressures, providing stable valve control independent from the fluctuating pressures in the piping system. No valve authority, pressure calculations or complicated valve flow setting calculations are required. At partial system load there is no resulting overflow because the valve always limits the flow corresponding to the design flow of the coil.

SmartX PIBCV valves with actuators include an integrated control valve with flow regulation for HVAC applications, plus an automatic flow limiting function for energy efficiency. A full range of Schneider Electric actuators are available for every control application including two position, proportional, floating, spring return open, spring return close, and non-spring return.

Applications

Variable flow systems: A SmartX PIBCV with a Schneider Electric actuator is used as a control valve for terminal units, like an AHU (Air Handling Unit), FCU (Fan Coil Unit) or radiation panel, and controls the required flow on every terminal unit maintaining hydronic balance in the system.
Constant flow systems: There are numerous applications in which SmartX PIBCV can be used. In a constant flow system with FCUs or in a one pipe heating system, SmartX PIBCVs can be installed as an automatic balancing valve in every riser. SmartX PIBCVs limit the flow to the set value, thus automatically achieving hydronic balance. Whenever an automatic flow limiter or a control valve is needed, the advantages of costsaving properties are inherent with SmartX PIBCVs. This includes systems with (floor) heating/cooling, concrete core activation or radiation panels.

Theory and
 Implementation

Theory

The SmartX PIBCV valve consists of two parts:

1. Differential Pressure Controller
2. Control Valve

1. Differential Pressure Controller (PC)

The differential pressure controller maintains a constant differential pressure across the control valve. The pressure difference is balanced so that when the differential pressure across the control valve changes (due to a change in available pressure, or movement of the control valve) the pressure regulator automatically aligns to a new position. This brings a new equilibrium and therefore keeps the differential pressure at a constant level.

2. Control Valve (CV)

The control valve has a linear characteristic. It features a stroke limitation that allows adjustment of the value. The maximum flow allowed by the control valve can be adjustable to a percentage of the valve's maximum flow rate.

Control Performance

SmartX PIBCV actuators can be used to change the flow response from linear to logarithmic (equal percentage). This makes the SmartX PIBCV suitable for all applications, including AHUs, where the equal percentage characteristic is needed to get a stable control loop. The actuators can be switched from linear to equal percentage by changing a dipswitch setting.

Easy Implementation

- No Cv or authority calculations needed. Flow is the only parameter to be considered when designing.
- Compact design, essential when only limited space is available such as in fan-coil units.
- Easy commissioning and troubleshooting. No specialized staff or measuring equipment needed.
- Trouble-free segmentation of the building project. SmartX PIBCVs will automatically control the flow, even when sections of the installation are unfinished. There is no requirement to re-adjust the SmartX PIBCV flow setting after finalization of the building project.

Flow Direction

A SmartX PIBCV valve is mono-directional, meaning the valve operates when the arrow on the valve body is aligned with the flow direction. When this rule is ignored, the valve acts as a variable orifice that causes water/glycol hammer at sudden closing when available pressure has increased, or the valve has been set to a lower value.
In the case when a system condition allows backflows, it is strongly recommended to use a backflow preventer in order to avoid possible water/glycol hammer that can damage the valve as well as other elements in the system.
It is recommended to fit a strainer upstream of the valve to increase reliability and to follow water/glycol treatment guidelines as detailed in VDI 2035.
The pipework system should be flushed prior to the operation.

Valve Assembly Part Number System

* Determined by valve size and flow; see tables 23 \& 24

SmartX PIBCV Selection Options

There are three methods for selecting SmartX PIBCV valves and Actuators:

1: Complete Method: Valve Assembly Selection
2. Custom Method: Valve Body and Actuator Field Assembly
3. Valve Only Method: Automatic Flow Limited Balance

1: Complete Method: Valve Assembly Selection

To select a PIBCV valve assembly select the required flow rate and actuator type. For example, to select a PIBCV valve assembly with a flow rate of 1.5 GPM and a non-spring return proportional actuator refer to Pg. 199, Table 1. Valve Assemblies ½..111/4" With Female NPT End Connectors, Without PT Ports .
Select the 1.5 GPM flow rate with the left column of the table. Select the actuator from the top row of the table.
The intersecting valve assembly part number from the left column and top row selections shows VP228E-15SN-L15-S101 which includes the set 1.5 GPM flow rate, installed actuator, female NPT end connectors, and metal tag with flow rate.
Specifications for the selected valve body actuators are in Pg. 200, Table 3. Specification $1 / 2 . .11 / 4$ " Valve Body Actuators and for the valve body in Pg. 204, Table 12. Specification Threaded Version, $1 / 2 . .2^{\prime \prime}$.

2. Custom Method: Valve Body and Actuator Field Assembly

Select the individual parts then set the flow rate and field assemble a valve assembly.
Pg. 204, Table 12. Specification Threaded Version, $1 / 2 . . .2$ " shows the valve body specifications and Pg. 211, Table 23. 1/2...2" Valve Flow Ranges (Qmin to Qnom) , and Pg. 212, Table 24. 21⁄2"... $10^{\prime \prime}$ Flanged Valve Flow Ranges (Qmin to Qnom), show the valve body flow rate ranges.
For example, to select a valve body that can be used in the flow rate range of 1 to 2 GPM, from Pg. 207, Table 17. Selection: $1_{2}{ }^{\prime \prime} . .2^{\prime \prime}$ Valve Body Tail Pieces, select the VP-228E-15BQSNT valve body that does not include PT ports, or select the VP-228E-15BSQ valve body if PT Ports are required.
Other larger valves could also provide the 1 to 2 GPM flow rates, but the VP-228E-15BQSNT was selected because it will be using a higher percentage of its flow range (in general, best accuracy is achieved when a higher percentage of flow rate is used).
The $1 / 2$ " to 2 " PIBCV valves use convenient valve body tail pieces for connection to the piping system.
From Pg. 207, Table 17. Selection: $1 / 2^{\prime \prime} . .2^{\prime \prime}$ Valve Body Tail Pieces , select the desired $1 / 2^{\prime \prime}$ tail piece - part number 9112108015 for Female NPT, 9112110015 for Male NPT, or 9112109015 for Sweat. Each tail piece part number includes two tail pieces.

Pg. 200, Table 3. Specification $1 / 2 . . .11 /$ " $^{\prime \prime}$ Valve Body Actuators shows the compatible actuators.

Select the MP131-24T for two position control, the MP131-24F for floating control, the MP-131-24MP for proportional control, the MP300SRU for spring return open universal control, or the MP300-SRD for spring return close universal control. Universal control actuators provide both proportional and floating input functionality. The valve body flow can easily be set before the actuator is installed as shown in the Pg. 198, PIBCV Flow Setting .

3. Valve Body Only: Automatic Flow Limited Balance Example

PIBCV valves can be used without actuators to limit the circuit flow to an adjustable flow rate.
Pg. 204, Table 12. Specification Threaded Version, $1 / 2 . .2^{\prime \prime}$ shows the valve body specifications and Pg. 207, Table 17. Selection: $1 / 2^{\prime \prime} \ldots 2^{\prime \prime}$ Valve Body Tail Pieces and Pg. 212, Table 24. 212"...10" Flanged Valve Flow Ranges (Qmin to Qnom) show the valve body flow rate ranges.
For example, to select a valve body that can be used in the flow rate range of 2 to 5 GPM from Table 23 select the VP229E-15BQHNT valve body part number. The $1 / 2$ " to $2^{\prime \prime}$ PIBCV valves use convenient valve body tail pieces for connection to the piping system.
From Pg. 207, Table 17. Selection: $1 / 2{ }^{\prime \prime} . .2^{\prime \prime}$ Valve Body Tail Pieces , select the desired 112 " tail piece: part number 9112108015 for Female NPT, 9112110015 for Male NPT, or 9112109015 for Sweat. Each tail piece part number includes two tail pieces.
The $11 / 2$ " and larger sized valves require a stem lock when used without an actuator as shown in Pg. 203, Table 11. Application: Operation of PIBCV Valve Body Without Actuator (which also shows application information for the valve bodies without actuators). The valve body flow can easily be set as shown in the PIBCV Flow Setting Section.

11. Pressure Independent Balancing and Control Valves and Actuators

PIBCV Flow Setting

$1 / 2 . .11 / 4$ " Size Valves

The calculated flow can be adjusted easily without using special tools. To change the presetting (factory setting is 100% for separately purchased PIBCV valve bodies) follow the four steps below:
(1) Remove the black protective cover or the mounted actuator.
(2) Raise the green pointer
(3) Turn (clock wise to decrease) to the new presetting.
(4) Press the pointer back into the lock position. After the pointer is clicked back into place the presetting is locked.

The presetting scale indicates values from 100% flow to 20%. Clock wise turning would decrease the flow value while counter clock wise would increase it.

Note:
1 turn = 5\%

PIBCV Flow Setting 5"...10"

Example: VP229E-15HN
With this $1 / 2$ " valve the nom flow
$=5 \mathrm{gal} / \mathrm{min}=100 \%$ presetting.
To set a flow of $4 \mathrm{gal} / \mathrm{min}$ you have to set: $4 / 5=80 \%$.
Schneider Electric recommends a presetting/flow from 20\% to 100\%. To set a PIBCV valve to a $Q_{\text {high }}$ setting above 100%, turn the green pointer counter clock wise from 100%. The $Q_{\text {high }}$ setting is the scale setting plus 90%. For example, to set the VP229E-15HN to a flow rate of $5.5 \mathrm{gal} / \mathrm{min}$, set $5.5 / 5.0=110 \%$ setting. Obtain the 110% setting by turning the green pointer counter clock wise from 100\% to 20\% (20\% and $90 \%=110 \%)$. As shown on page $204, Q_{\text {high }}$ settings above 100% slightly increase the valve's required minimum differential pressure.

PIBCV Flow Setting 1½"...4"

11. Pressure Independent Balancing and Control Valves and Actuators

Valve Assembly and Suitable Actuators

Table 1. Valve Assemblies $1 / 2 \ldots 1 \frac{1}{4}$ " With Female NPT End Connectors, Without PT Ports

		24 Vac Two Position with Auxiliary Switch (MP131-24T)	24 Vac Three Wire Floating with Auxiliary Switch (MP131-24F)	24 Vac Proportional with Position Output Signal (MP131-24MP)	24 Vac Proportional/Floating with Position Output Signal Spring Return Open (MP300-SRU)	24 Vac Proportional/Floating with Position Output Spring Return Closed (MP300-SRD)
$\left\lvert\, \begin{gathered} \text { Flow } \\ \text { Rate } \\ (\text { GPM })^{\mathrm{a}} \end{gathered}\right.$	Valve Size (inch)					
0.5	1/2	VP228E-10LN-L05-A101	VP228E-10LN-L05-F101	VP228E-10LN-L05-S101	VP228E-10LN-L05-U201	VP228E-10LN-L05-U301
1.0	1/2	VP228E-15LN-L10-A101	VP228E-15LN-L10-F101	VP228E-15LN-L10-S101	VP228E-15LN-L10-U201	VP228E-15LN-L10-U301
1.5	1/2	VP228E-15SN-L15-A101	VP228E-15SN-L15-F101	VP228E-15SN-L15-S101	VP228E-15SN-L15-U201	VP228E-15SN-L15-U301
2.0	1/2	VP228E-15SN-L20-A101	VP228E-15SN-L20-F101	VP228E-15SN-L20-S101	VP228E-15SN-L20-U201	VP228E-15SN-L20-U301
2.5	1/2	VP229E-15HN-L25-A101	VP229E-15HN-L25-F101	VP229E-15HN-L25-S101	VP229E-15HN-L25-U201	VP229E-15HN-L25-U301
3.0	1/2	VP229E-15HN-L30-A101	VP229E-15HN-L30-F101	VP229E-15HN-L30-S101	VP229E-15HN-L30-U201	VP229E-15HN-L30-U301
3.5	1/2	VP229E-15HN-L35-A101	VP229E-15HN-L35-F101	VP229E-15HN-L35-S101	VP229E-15HN-L35-U201	VP229E-15HN-L35-U301
4.0	1/2	VP229E-15HN-L40-A101	VP229E-15HN-L40-F101	VP229E-15HN-L40-S101	VP229E-15HN-L40-U201	VP229E-15HN-L40-U301
4.0	3/4	VP228E-20SN-L40-A101	VP228E-20SN-L40-F101	VP228E-20SN-L40-S101	VP228E-20SN-L40-U201	VP228E-20SN-L40-U301
4.5	1/2	VP229E-15HN-L45-A101	VP229E-15HN-L45-F101	VP229E-15HN-L45-S101	VP229E-15HN-L45-U201	VP229E-15HN-L45-U301
5.0	1/2	VP229E-15HN-L50-A101	VP229E-15HN-L50-F101	VP229E-15HN-L50-S101	VP229E-15HN-L50-U201	VP229E-15HN-L50-U301
5.5	3/4	VP229E-20HN-L55-A101	VP229E-20HN-L55-F101	VP229E-20HN-L55-S101	VP229E-20HN-L55-U201	VP229E-20HN-L55-U301
6.0	3/4	VP229E-20HN-L60-A101	VP229E-20HN-L60-F101	VP229E-20HN-L60-S101	VP229E-20HN-L60-U201	VP229E-20HN-L60-U301
6.5	3/4	VP229E-20HN-L65-A101	VP229E-20HN-L65-F101	VP229E-20HN-L65-S101	VP229E-20HN-L65-U201	VP229E-20HN-L65-U301
7.0	3/4	VP229E-20HN-L70-A101	VP229E-20HN-L70-F101	VP229E-20HN-L70-S101	VP229E-20HN-L70-U201	VP229E-20HN-L70-U301
7.5	3/4	VP229E-20HN-L75-A101	VP229E-20HN-L75-F101	VP229E-20HN-L75-S101	VP229E-20HN-L75-U201	VP229E-20HN-L75-U301
7.5	1	VP229E-25SN-L75-A101	VP229E-25SN-L75-F101	VP229E-25SN-L75-S101	VP229E-25SN-L75-U201	VP229E-25SN-L75-U301
8	1	VP229E-25HN-L80-A101	VP229E-25HN-L80-F101	VP229E-25HN-L80-S101	VP229E-25HN-L80-U201	VP229E-25HN-L80-U301
8.5	1	VP229E-25HN-L85-A101	VP229E-25HN-L85-F101	VP229E-25HN-L85-S101	VP229E-25HN-L85-U201	VP229E-25HN-L85-U301
9.0	1	VP229E-25HN-L90-A101	VP229E-25HN-L90-F101	VP229E-25HN-L90-S101	VP229E-25HN-L90-U201	VP229E-25HN-L90-U301
9.5	1	VP229E-25HN-L95-A101	VP229E-25HN-L95-F101	VP229E-25HN-L95-S101	VP229E-25HN-L95-U201	VP229E-25HN-L95-U301
10	1	VP229E-25HN-010-A101	VP229E-25HN-010-F101	VP229E-25HN-010-S101	VP229E-25HN-010-U201	VP229E-25HN-010-U301
11	1	VP229E-25HN-011-A101	VP229E-25HN-011-F101	VP229E-25HN-011-S101	VP229E-25HN-011-U201	VP229E-25HN-011-U301
12	1	VP229E-25HN-012-A101	VP229E-25HN-012-F101	VP229E-25HN-012-S101	VP229E-25HN-012-U201	VP229E-25HN-012-U301
13	$11 / 4$	VP229E-32SN-013-A101	VP229E-32SN-013-F101	VP229E-32SN-013-S101	VP229E-32SN-013-U201	VP229E-32SN-013-U301
14	$11 / 4$	VP229E-32SN-014-A101	VP229E-32SN-014-F101	VP229E-32SN-014-S101	VP229E-32SN-014-U201	VP229E-32SN-014-U301
15	$11 / 4$	VP229E-32HN-015-A101	VP229E-32HN-015-F101	VP229E-32HN-015-S101	VP229E-32HN-015-U201	VP229E-32HN-015-U301
16	11/4	VP229E-32HN-016-A101	VP229E-32HN-016-F101	VP229E-32HN-016-S101	VP229E-32HN-016-U201	VP229E-32HN-016-U301
17	11/4	VP229E-32HN-017-A101	VP229E-32HN-017-F101	VP229E-32HN-017-S101	VP229E-32HN-017-U201	VP229E-32HN-017-U301

a. Factory set. Complete flow ranges shown in tables for $1 / 2 \ldots 2^{\prime \prime}$ on page 204 and page 211.

11. Pressure Independent Balancing and Control Valves and Actuators

PIBCV Assemblies: ½"...11⁄" Female NPT, with PT Ports

Table 2. Valve Assemblies $1 / 2 \ldots 1 \frac{1}{4}$ " With Female NPT End Connectors, With PT Ports

		24 Vac Two Position with Auxiliary Switch (MP131-24T)	24 Vac Three Wire Floating with Auxiliary Switch (MP131-24F)	24 Vac Proportional with Position Output Signal (MP131-24MP)	24 Vac Proportional/Floating Spring Return Open (MP300SRU)	24 Vac Proportional/Floating Spring Return Closed (MP300SRD)
0.5	1/2	VP228E-10L-L05-A101	VP228E-10L-L05-F101	VP228E-10L-L05-S101	VP228E-10L-L05-U201	VP228E-10L-L05-U301
1.0	1/2	VP228E-15L-L10-A101	VP228E-15L-L10-F101	VP228E-15L-L10-S101	VP228E-15L-L10-U201	VP228E-15L-L10-U301
1.5	1/2	VP228E-15S-L15-A101	VP228E-15S-L15-F101	VP228E-15S-L15-S101	VP228E-15S-L15-U201	VP228E-15S-L15-U301
2.0	1/2	VP228E-15S-L20-A101	VP228E-15S-L20-F101	VP228E-15S-L20-S101	VP228E-15S-L20-U201	VP228E-15S-L20-U301
4.0	3/4	VP228E-20S-L40-A101	VP228E-20S-L40-F101	VP228E-20S-L40-S101	VP228E-20S-L40-U201	VP228E-20S-L40-U301
7.5	1	VP229E-25S-L75-A101	VP229E-25S-L75-F101	VP229E-25S-L75-S101	VP229E-25S-L75-U201	VP229E-25S-L75-U301
14	11/4	VP229E-32S-014-A101	VP229E-32S-014-F101	VP229E-32S-014-S101	VP229E-32S-014-U201	VP229E-32S-014-U301

a. Factory set. Complete flow ranges shown in tables for $1 / 2 \ldots .2^{\prime \prime}$ on page 11 and page 18.

Table 3. Specification $1 / 2 \ldots 11 / 4$ " Valve Body Actuators

$1 / 2^{\prime \prime}$ to $1 \frac{1}{4}$ " Valve Body Actuator Part Number (actuator code)	$\begin{gathered} \text { MP131-24T } \\ (\text { A101) } \end{gathered}$	$\begin{gathered} \text { MP131-24F } \\ (\text { F101 }) \end{gathered}$	$\begin{gathered} \text { MP131-24MP } \\ (\text { S101 }) \end{gathered}$	$\begin{aligned} & \text { MP300-SRU } \\ & \text { (U201) } \end{aligned}$	$\begin{gathered} \text { MP300-SRD } \\ (\text { U301) } \end{gathered}$
Input Signal	Two Position, 3 Wire with selectable input jumper signal action selection	Three Wire Floating	Proportional, 0... 10 Vdc, 2... $10 \mathrm{Vdc}, 4$... 20 mA , sequencing with selectable input signal action, DIP switch selectable	Proportional, $0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{~mA}$, sequencing with selectable input signal action and Floating, DIP switch selectable	
Electrical Connection	Screw terminal with conduit connector				
Position Feedback Output Signal	-	-	$0 . .10 \mathrm{Vdc}$	$0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}$	
Spring Return	-	-	-	Open Valve	Close Valve
Auxiliary Switch	Yes	Yes	-	-	-
Other Features	-	-	Weekly anti blocking selection, auto calibration, LED indication	Valve stroke length selection, LED indication	
Linear/Equal\% Valve Flow Curve Selection	-	-	Yes	Yes	
Actuator Speed s/mm $60 \mathrm{~Hz}(50 \mathrm{~Hz})$	20 (24)			11.7 (14)	
Power Consumption	1 VA		1.5 VA	9 VA	
Actuator Weight (lb.)	. 9			2.0	1.3
Operating Temperature Limits ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	32... 131 (0...55)				
Regulatory Compliance	cULus according to UL 60730-1A/-2-14 and CAN/CSA E60730-1/-2-14 and CE according to EN 60730-1/-2-14 per EMC [2014/30/EU] and LVD [2014/35/EU]				
Specification Data Sheet	F-27961			F-27962	
Installation Data sheet	F-27938	F-27949	F-27948	F-27954	

All actuators are $24 \mathrm{Vac} .50 / 60 \mathrm{HZ}$ with removable conduit connector plate and wiring terminal block, manual override

11. Pressure Independent Balancing and Control Valves and Actuators

 PIBCV Assemblies 1½"...4"Table 4. Valve Assemblies $11 / 2$ ", 2" With Female NPT End Connectors, With PT Ports

Flow Rate $(G P M)^{a}$	Valve Size (inch)	24 Vac Proportional with Position Output Signal (MP500C)	24 Vac Proportional/Floating with Position Output Signal Spring Return Open (MP500C-SRU)	24 Vac Proportional/Floating with Position Output Spring Return Closed (MP500C-SRD)
18	$11 / 2$	VP220E-40S-018-U131	VP220E-40S-018-U231	VP220E-40S-018-U331
19	$11 / 2$	VP220E-40S-019-U131	VP220E-40S-019-U231	VP220E-40S-019-U331
20	$11 / 2$	VP220E-40S-020-U131	VP220E-40S-020-U231	VP220E-40S-020-U331
22	$11 / 2$	VP220E-40S-022-U131	VP220E-40S-022-U231	VP220E-40S-022-U331
24	$11 / 2$	VP220E-40S-024-U131	VP220E-40S-024-U231	VP220E-40S-024-U331
26	$11 / 2$	VP220E-40S-026-U131	VP220E-40S-026-U231	VP220E-40S-026-U331
28	$11 / 2$	VP220E-40S-028-U131	VP220E-40S-028-U231	VP220E-40S-028-U331
30	$11 / 2$	VP220E-40S-030-U131	VP220E-40S-030-U231	VP220E-40S-030-U331
32	$11 / 2$	VP220E-40S-032-U131	VP220E-40S-032-U231	VP220E-40S-032-U331
34	2	VP220E-50S-034-U131	VP220E-50S-034-U231	VP220E-50S-034-U331
36	2	VP220E-50S-036-U131	VP220E-50S-036-U231	VP220E-50S-036-U331
38	2	VP220E-50S-038-U131	VP220E-50S-038-U231	VP220E-50S-038-U331
40	2	VP220E-50S-040-U131	VP220E-50S-040-U231	VP220E-50S-040-U331
44	2	VP220E-50S-044-U131	VP220E-50S-044-U231	VP220E-50S-044-U331
48	2	VP220E-50S-048-U131	VP220E-50S-048-U231	VP220E-50S-048-U331
52	2	VP220E-50S-052-U131	VP220E-50S-052-U231	VP220E-50S-052-U331

		24 Vac Proportional with Position Output Signal (MP500C)	24 Vac Proportional/Floating with Position Output Signal Spring Return Open (MP500C-SRU)	24 Vac Proportional/Floating with Position Output Signal Spring Return Closed (MP500C-SRD)
Flow Rate (GPM) ${ }^{\text {a }}$	Valve Size (inch)			
56	21/2	VP220A-65S-056-U131	VP220A-65S-056-U231	VP220A-65S-056-U331
60	21/2	VP220A-65S-060-U131	VP220A-65S-060-U231	VP220A-65S-060-U331
65	21/2	VP220A-65S-065-U131	VP220A-65S-065-U231	VP220A-65S-065-U331
70	21/2	VP220A-65S-070-U131	VP220A-65S-070-U231	VP220A-65S-070-U331
75	$21 / 2$	VP220A-65S-075-U131	VP220A-65S-075-U231	VP220A-65S-075-U331
80	21/2	VP220A-65S-080-U131	VP220A-65S-080-U231	VP220A-65S-080-U331
90	3	VP220A-80S-090-U131	VP220A-80S-090-U231	VP220A-80S-090-U331
100	3	VP220A-80S-100-U131	VP220A-80S-100-U231	VP220A-80S-100-U331
110 (min. 44)	$2^{1 / 2}$	VP220A-65H-110-U131	VP220A-65H-110-U231	VP220A-65H-110-U331
165 (min. 66)	4	VP220A-100S-165-U131	VP220A-100S-165-U231	VP220A-100S-165-U331
176 (min. 70)	3	VP220A-80H-176-U131	VP220A-80H-176-U231	VP220A-80H-176-U331
$\begin{aligned} & 260 \text { (min. } \\ & \text { 104) } \end{aligned}$	4	VP220A-100H-260-U131	VP220A-100H-260-U231	VP220A-100H-260-U331

a. Factory set. Complete flow ranges shown in tables for $2^{1 ⁄ 2} 2^{\prime \prime} .4^{\prime \prime}$ on page 211 and page 212 .

F-27855-11

11. Pressure Independent Balancing and Control Valves and Actuators

Table 6. Specification $1 \frac{1}{2} 2^{\prime \prime} . .4$ " Valve Body Actuators

11/2"...4" Valve Body Actuator Part Number (actuator code)	MP500C (U131)	MP500C-SRU (U231)	MP500C-SRD (U331)
Input Signal	Proportional, $0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{~mA}$, sequencing with selectable input signal action and Floating, DIP switch selectable		
Electrical Connection	Screw terminal with conduit connector		
Position Feedback Output Signal	$2 \ldots 10 \mathrm{Vdc}$		
Spring Return	-	Open Valve	Close Valve
Auxilary Switch	Optional Module		
Other Features	Auto calibration, field selectable floating input signal travel time, powered manual override	Auto calibration, field selectable floating input signal travel time	
Linear/Equal\% Valve Flow Curve Selection	Yes	Yes	
Actuator Speed Full Stroke $60 \mathrm{~Hz}(50 \mathrm{~Hz})$	Proportional 15 (15) Floating 60 or 300 (60 or 300)	Proportional 15 (15) Floating 60 or 300 (60 or 300) Spring Return 13 (13)	
Power Consumption	Running 15 VA, Transformer Sizing 50 VA	Running 30 VA, Transformer Sizing 50 VA	
Operating Temperature Limits ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	14... 122 (-10...50)		
Actuator Weight (lb.)	4.0	6.0	
Regulatory Compliance	Underwriters Laboratory (E9429) compliance as Temperature Indicating \& Regulatory Equipment cULus LISTED per UL873 and Canadian Standard C22.2 No. 24. European Community compliance per EMC directive (2014/30/EU) and LVD directive (2014/35/EU). Australian/New Zealand community RCM mark.		
Specification Data Sheet	F-27944	F-27945	
Installation Data sheet	F-27942	F-27943	

All actuators are $24 \mathrm{Vac} .50 / 60 \mathrm{HZ}$ with conduit connector holes and wiring terminal block, manual override
Table 7. Valve Assemblies 5" and 6" With PT Ports with ANSI Standard B16.1 Flanges

		24 Vac Proportional with Position Output Signal (MP2000-NSR)	24 Vac Proportional/Floating with Position Output Signal Spring Return Open (MP2000-SRU)	24 Vac Proportional/Floating with Position Output Spring Return Closed (MP2000-SRD)
Flow Rate (GPM) ${ }^{a}$	Valve Size (inch)			
395 (min. 158)	5	VP220A-125S-395-U161	VP220A-125S-395-U261	VP220A-125S-395-U361
485 (min. 194)	5	VP220A-125H-485-U161	VP220A-125H-485-U261	VP220A-125H-485-U361
640 (min. 256)	6	VP220A-150S-640-U161	VP220A-150S-640-U261	VP220A-150S-640-U361
830 (min. 332)	6	VP220A-150H-830-U161	VP220A-150H-830-U261	VP220A-150H-830-U361

a. Factory set. Complete flow ranges shown in tables for 5 "...6" on page 205 and page 212.

Table 8. Specification 5"and 6" Valve Body Actuators

a. When used with a proportional input signal. All actuators are $24 \mathrm{Vac} .50 / 60 \mathrm{HZ}$ with conduit connector holes and wiring terminal block, manual override

11. Pressure Independent Balancing and Control Valves and Actuators

PIBCV Assemblies: 8" and 10" with PT Ports \& Flanges

Table 9. Valve Assembly 8" and 10" With PT Ports

Flow Rate (GPM)	* Valve Size (inch)	24 Vac Proportional with Position Output Signal (MP4000)
880 (min. 352)	8	VP222A-200S-880-U181
1188 (min. 475)	8	VP222A-200H-1188-U181
1320 (min. 528)	10	VP222A-250S-1320-U181
1630 (min. 652)	10	VP222A-250H-1630-U181

* Factory set. Complete flow ranges are shown in tables for 8" and 10 " on page 205 and page 212.

Table 10. Specification 8" and 10" Valve Body Actuators

8" and 10" Valve Body Actuator Part Number (actuator code)	MP4000 (U181)		
Input Signal	Proportional, $0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}, 0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$, with selectable input signal action and Floating,		
DIP swtich selectable			

a. When used with a proportional input signal.

All actuators are $24 \mathrm{Vac} .50 / 60 \mathrm{HZ}$ with conduit connector holes and wiring terminal block, manual override.
Table 11. Application: Operation of PIBCV Valve Body Without Actuator
Operation of the PIBCV valve body without an actuator for an automatic flow limiting balancing application.

PIBCV Valve Size	Valve Body Series	Valve Stem Lock Part Number	Recommended Installation and Valve Shut Off Capability
1/2"...1-1/4"	VP228E-xxxxxxx, VP229E-xxxxxxx	Use black cap provided with VP228Exxxxxxx or VP229E-xxxxxxx valve body	Install valve in the supply water pipe for best shutoff valve performance. To shutoff valve tighten black cap (max. close off pressure is 14.5 psi$)$. To shut off against a higher differential pressure set the valve flow to 0%.
1-1/2", $2^{\prime \prime}$	VP220E-xxxxx		Install valve in either the supply or return water pipe. To shutoff valve tighten bottom knob (max. close off pressure is 232 psi)
2-1/2" ... ${ }^{\prime \prime}$	VP220A-xxxxx	9114070000 (not included with valve body)	Install valve in either the supply or return water pipe. To shutoff valve tighten bottom insert with a 8 mm allen wrench (max. close off pressure is 232 psi)
5"...6"	VP221A-xxxxxx	9114071000 (not included with valve body)	No shut off knob, set the valve to a 0\% flow setting to shutoff flow
8"...10"	VP222A-xxxxx	9114072000 (not included with valve body)	

The 9114070000 , 9114071000 , and 9114072000 Valve Stem Locks are secured to the valve body with a 10 mm allen wrench.
See Pg. 206, Table 15. Assembly Valve Body Configurations for a listing of all PIBCV valve body part numbers.

11. Pressure Independent Balancing and Control Valves and Actuators

PIBCV Specifications: Threaded ½'...2"

Technical Data

Table 12. Specification Threaded Version, $1 / 2 \ldots 2^{\prime \prime}$

Valve Size			1/2"				3/4"		1"		11/4"		11/2"	2"
Valve Assembly Part Number without PT Ports ${ }^{1)}$			$\begin{aligned} & \text { VP228E } \\ & -10 \mathrm{LN}- \end{aligned}$	$\begin{aligned} & \text { VP228E } \\ & -15 \mathrm{LN}- \end{aligned}$	VP228E $-15 S N-$	$\begin{aligned} & \text { VP229E } \\ & -15 \mathrm{HN}- \end{aligned}$	$\begin{aligned} & \text { VP228E } \\ & \text {-20SN- } \end{aligned}$	$\begin{aligned} & \text { VP229E } \\ & -20 \mathrm{HN}- \end{aligned}$	$\begin{aligned} & \text { VP229E } \\ & \text {-25SN- } \end{aligned}$	$\begin{aligned} & \text { VP229E } \\ & -25 \mathrm{HN}- \end{aligned}$	$\begin{aligned} & \text { VP229E } \\ & -32 S N- \end{aligned}$	$\begin{aligned} & \text { VP229E } \\ & -32 \mathrm{HN}- \end{aligned}$	-	-
Valve Assembly Part Number with PT Ports ${ }^{1)}$			$\begin{gathered} \text { VP228E } \\ -10 L- \end{gathered}$	$\begin{gathered} \hline \text { VP228E } \\ -15 \mathrm{~L}- \\ \hline \end{gathered}$	$\begin{gathered} \text { VP228E } \\ -15 S- \end{gathered}$	-	$\begin{gathered} \text { VP228E } \\ \text {-20S- } \end{gathered}$	-	$\begin{aligned} & \text { VP229E } \\ & \text {-25S- } \end{aligned}$	-	$\begin{gathered} \text { VP229E- } \\ \text { 32S- } \end{gathered}$	-	$\begin{gathered} \text { VP220E- } \\ \text { 40S- } \end{gathered}$	$\begin{gathered} \text { VP220E- } \\ \text { 50S- } \end{gathered}$
Flow range	$Q_{\text {min }}$	gal/min	. 13	. 24	. 4	1	. 8	1.5	1.5	2.4	2.82	3.5	13.2	22
	$\begin{gathered} Q_{\text {nom }} \\ \left.(100 \%)^{2}\right) \\ \hline \end{gathered}$. 66	1.2	2	5	4	7.5	7.5	12	14.1	17.5	33	55
	$Q_{\text {high }}$. 79	1.45	2.4	5.5	4.75	8.25	8.2	13.2	15.5	19.25	33	55
Setting range ${ }^{3)}$		\%	20-120\%			20-110\%	20-120\%	20-110\%					40-100\%	
Diff. pressure 4), 5)	$\begin{gathered} \Delta p Q_{\text {nom }} \\ \left(\Delta \mathrm{p} \mathrm{a}_{\text {high }}\right) \end{gathered}$	psi [kPa]	$\begin{gathered} \hline 2.32-58 \\ (2.61-58) \\ {[16-400} \\ (18-400)] \end{gathered}$			$\begin{gathered} 5-58 \\ (5.8-58) \\ {[35-400} \\ (40-400)] \end{gathered}$	$2.32-58$ $(2.61-58)$ $[16-400$ $(18-400)]$	$5-58$ $(5.8-58)$ $[35-400$ $(40-400)]$	$\begin{gathered} 2.9-58 \\ (3.63-58) \\ {[20-400} \\ (25-400)] \end{gathered}$	$\begin{gathered} 5-58 \\ (5.8-58) \\ {[35-400} \\ (40-400)] \end{gathered}$	$\begin{array}{\|c} \hline 2.9-58 \\ (3.63-58) \\ {[20-400} \\ (25-400)] \end{array}$	$5-58$ $(5.8-58)$ $[35-400$ $(40-400)]$	$\begin{gathered} 4.35-58 \\ {[30-400]} \end{gathered}$	
Stroke $Q_{\text {nom }}$		in. (mm)	0.09 (2.25)			. 157 (4)	0.09 (2.25)	. 157 (4)	. 177 (4.5)				. 39 (10)	
Connection		$\begin{gathered} \hline \text { ext. thread } \\ \text { (ISO } \\ 228 / 1 \text {) } \\ \hline \end{gathered}$	G $1 / 2 \mathrm{~A}$	G $3 / 4 \mathrm{~A}$			G 1 A		G 111/4		G 11⁄2 A		G 2 A	G $211 / 2 \mathrm{~A}$
		actuators	MP131-24T, MP131-24F, MP131-24MP, MP300-SRU, MP300-SRD										$\begin{gathered} \text { MP500C, } \\ \text { MP500C-SRU/SRD } \end{gathered}$	
Body	Pressure ating	psi	EN 12516-2:2004, 250 psi, PN 16											
Leakage acc. to standard IEC 60534			Class 4, max. 0.01% of $\mathrm{Q}_{\text {nom }}$						max. 0.05% of $\mathrm{Q}_{\text {nom }}$					
Max. close off differential pressure across the valve			232 psi (16 bar)											
Control range			Acc. to standard IEC 60534 control range is high as flow characteristic is linear (1:1000)											
Control valve's characteristic			Stem up open, Linear (can be converted by actuator to equal percentage)											
For shut off function			Acc. to ISO 5208 class A - no visible leakage											
Flow medium			Water and water mixture for closed heating and cooling systems according to plant type I for DIN EN 14868. When used in plant Type II for DIN EN 14868 appropriate protective measures are taken. The requirements of VDI 2035, part $1+2$ are observed.											
Medium temperature		${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	(water/glycol) 15...250 (-10 ... 120											
Materials in the water/glycol														
Valve bodies			Dezincification Resistant Brass (CuZn36Pb2As - CW 602N) per EN 12420										Grey ironEN-GJL-250 (GG25) per EN 1561	
Cone (Pc)			Wrought copper CuZn40Pb3-CW Stainless Steel, W.Nr. 1.4305 614 N, Stainless Steel, W.Nr. 1.4305											
Seat (Pc)			EPDM										Stainless Steel, W.Nr. 1.4305	
Seat (Cv)			Dezincification Resistant Brass (CuZn36Pb2As - CW 602N)										Stainless Steel, W.Nr. 1.4305	
Membranes and O-rings			EPDM											
Springs			Stainless Steel, W.Nr. 1.4568, W.Nr. 1.4310											
Cone (Cv)			Wrought copper, CuZn40Pb3 - CW 614N											
Screw			Stainless Steel (A2)											
Flat gasket			NBR											
Sealing agent (only for valves with PT Ports)			Dimethacrylate Ester											
Materials out of the water/glycol														
Plastic parts			PA										POM	
Insert parts and outer screws			CuZn39Pd3 - CW614N										-	

Note: Water/glycol Compatibility: It is the responsibility of the installer or product specifier to verify water/glycol compatibility of the valves construction materials with the supplier of water/glycol treatment/heat transfer solution.

1) See Pg. 206, Table 15. Assembly Valve Body Configurations for a listing of all PIBCV
valve body part numbers.
Factory setting of the valve is done at $Q_{\text {nom }}$ (100%) or lower depending on flow rate ordered.
Regardless of the setting, the valve can modulate below 1% of set flow.
2) $\Delta p=$ (P1-P3) min $\sim \max$
3) $87 \mathrm{psi} \Delta \mathrm{p}$ is possible if consideration has been made to the flow velocity, cavitation and noise. For application usage please speak with Product Support

11. Pressure Independent Balancing and Control Valves and Actuators

PIBCV Specifications: 2½"...10" Flange Version

Table 13. Specification Flange Version, $2^{1 ⁄ 2} 2^{\prime \prime} . .4^{\prime \prime}$

Valve Size			21/2"		3"		4"	
Part Number			VP220A-65S	VP220A-65H	VP220A-80S	VP220A-80H	VP220A-100S	VP220A-100H
Flow range	$\mathrm{Q}_{\text {min }}$	$\mathrm{gal} / \mathrm{min}$	34	44	48	70	66	104
	$Q_{\text {nom }}(100 \%)^{1)}$		85	110	120	176	165	260
Setting range ${ }^{2)}$		\%	40-100\%					
Diff. pressure ${ }^{3), ~ 4)}$	$\Delta p Q_{\text {nom }}$	psi [kPa]	4.35-58 [30-400]	8.7-58 (60-400)	4.35-58 (30-400)	8.7-58 (60-400)	4.35-58 (30-400)	8.7-58 (60-400)
Body Pressure Rating psi			Class 125 per ASME B16.1-2010 Material Class B per ASTM A 126-04 (2014), 200 psi to $150^{\circ} \mathrm{F}, 190$ psi to $200^{\circ} \mathrm{F}, 180$ psi to $225^{\circ} \mathrm{F}, 175$ psi to $250^{\circ} \mathrm{F}$					
Control valve's characteristic			Stem up open, Linear (can be converted by actuator to equal percentage)					
Leakage acc. to standard IEC 60534			$\text { Max. 0.05\% of } Q_{\text {nom }}$					
Max. close off differential pressure across the valve			232 psi (16 bar)					
For shut off function			Acc. to ISO 5208 class A - no visible leakage					
Flow medium			Water and water mixture for closed heating and cooling systems according to plant type I for DIN EN 14868. When used in plant Type II for DIN EN 14868 appropriate protective measures are taken. The requirements of VDI 2035, part $1+2$ are observed.					
Medium temperature		${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	(water/glycol) 15... $250(-10 \ldots+120)$					
Stroke $Q_{\text {nom }}$		in. (mm)	. 59 (15)					
Connection	flange		ANSI Class 125					
	actuators		MP500C, MP500C-SRU, MP500C-SRD					
Materials in the water/glycol								
Valve bodies			Grey iron EN-GJL-250(GG25)					
Membranes / Bellow / O-rings			EPDM					
Springs			Stainless Steel, W.Nr. 1.4568, W.Nr. 1.4310					
Cone (Pc)			Wrought copper, CuZn40Pb3 - CW 614N, Stainless Steel, W.Nr. 1.4305					
Seat (Pc) / Seat (Cv)			W.Nr. 1.4305					
Cone (Cv)			CuZn40Pb3 - CW 614N					
Screw			Stainless Steel (A2)					
Flat gasket			NBR					

Table 14. Specification Flange Version, 5"...10"

Valve Size				5"		$6{ }^{\prime \prime}$		8"		10"	
Part Number				VP220A-125S	VP220A-125H	VP220A-150S	VP220A-150H	VP222A-200S	VP222A-200H	VP222A-250S	VP222A-250H
Flow range		$Q_{\text {min }}$	gal / min	158	194	256	332	352	475	528	652
		$\mathrm{Q}_{\text {nom }}(100 \%)^{1)}$		395	485	640	830	880	1188	1320	1630
Setting range ${ }^{2)}$			\%	40-110\%							
	Diff. pressure ${ }^{3)}$	$\Delta p Q_{\text {nom }}$	$\begin{gathered} \mathrm{psi} \\ {[\mathrm{kPa}]} \end{gathered}$	$\begin{gathered} 5.8-58 \\ {[40-400]} \end{gathered}$	$\begin{gathered} 8.7-58 \\ {[60-400]} \end{gathered}$	$\begin{gathered} 5.8-58 \\ {[40-400]} \end{gathered}$	$\begin{gathered} 8.7-58 \\ {[60-400]} \end{gathered}$	$\begin{gathered} 5.8-58 \\ {[40-400]} \end{gathered}$	$\begin{gathered} 8.7-58 \\ {[60-400]} \end{gathered}$	$\begin{gathered} 5.8-58 \\ {[40-400]} \end{gathered}$	$\begin{gathered} 8.7-58 \\ {[60-400]} \end{gathered}$
Leakage acc. to standard IEC 60534				Class 4, max. 0.01% of $Q_{\text {nom }}$							
Max. close off differential pressure across the valve				232 psi (16 bar)							
Connection		flange		ANSI Class 125				EN 1092			
		actuators		MP2000-NSR, MP2000-SRU, MP2000-SRD				MP4000			
Flow medium				Water and water mixture for closed heating and cooling systems according to plant type I for DIN EN 14868. When used in plant Type II for DIN EN 14868 appropriate protective measures are taken. The requirements of VDI 2035, part $1+2$ are observed.							
Body Pressure Rating psi				Class 125 per ASME B16.1-2010 Material Class B per ASTM A 126-04 (2014), 200 psi to $150^{\circ} \mathrm{F}, 190$ psi to $200^{\circ} \mathrm{F}, 180 \mathrm{psi}$ to $225^{\circ} \mathrm{F}, 175$ psi to $250^{\circ} \mathrm{F}$							
Control range				Acc. to standard IEC 60534 control range is high as flow characteristic is linear.							
Control valve's characteristic				Stem up open, Linear (could be converted by actuator to equal percentage)							
Medium temperature			${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	(water/glycol) 15... $250(-10 \ldots+120)$							
Stroke ($\mathrm{Q}_{\text {nom }}$)			in. (mm)	1.18 (30)							
Materials in the water/glycol											
Valve bodies				Grey iron EN-GJL-250 (GG 25)							
Membranes/ Bellow / O-Rings				W.Nr.1.4571		EPDM					
Springs				Stainless Steel, W.Nr.1.4401		Stainless Steel, W.Nr. 1.4310					
Cone (Pc) / Cone (Cv)				Stainless Steel, W.Nr.1.4404NC		Stainless Steel, W.Nr.1.4021					
Flat gasket				Graphite gasket		Non asbestos					
Seat (Pc) / Seat (Cv)				Stainless Steel, W.Nr. 1.4027							
Screw				Stainless Steel, W.Nr.1.1181							
1) Factory setting of the valve is done at Qnom (100%) or lower depending on flow rate ordered. Pc - Pressure controller 2) Regardless of the setting, the valve can modulate below 1% of set flow. Cv-Control valve 3) $\Delta \mathrm{p}=(\mathrm{P} 1-\mathrm{P} 3)$ min \sim max 4) $87 \mathrm{psi} \Delta \mathrm{p}$ is possible if consideration has been made to the flow velocity, cavitation and noise. for application usage please speak with Product Support											
F-27855-11				Life Is Uln $\underset{\substack{\text { Slectric }}}{\substack{\text { Sleider } \\ 205}}$							

11. Pressure Independent Balancing and Control Valves and Actuators PIBCV Assembly Valve
Body Configurations

Table 15. Assembly Valve Body Configurations

Pipe Size (in.)	Valve Assembly Part Number Series	Complete Valve Body Part Number	Valve Type	Female NPT End Connectors (included with all 1/2" through 2" Valve Actuator Assemblies)	T Ports	Installation Data Sheet
1/2	VP228E-10LN-	VP228E-10BQLNT	Threaded	9112108010		F-27937
1/2	VP228E-10L-	VP228E-10BQL	Threaded	9112108010	Yes	
1/2	VP228E-15LN-	VP228E-15BQLNT	Threaded	9112108015		
1/2	VP228E-15L-	VP228E-15BQL	Threaded	9112108015	Yes	
1/2	VP228E-15SN-	VP228E-15BQSNT	Threaded	9112108015		
1/2	VP228E-15S-	VP228E-15BQS	Threaded	9112108015	Yes	
1/2	VP229E-15HN-	VP229E-15BQHNT	Threaded	9112108015		
3/4	VP228E-20SN-	VP228E-20BQSNT	Threaded	9112108020		
3/4	VP228E-20S-	VP228E-20BQS	Threaded	9112108020	Yes	
3/4	VP229E-20HN-	VP229E-20BQHNT	Threaded	9112108020		
1	VP229E-25SN-	VP229E-25BQSNT	Threaded	9112108025		
1	VP229E-25S-	VP229E-25BQS	Threaded	9112108025	Yes	
1	VP229E-25HN-	VP229E-25BQHNT	Threaded	9112108025		
1-1/4	VP229E-32SN-	VP229E-32BQSNT	Threaded	9112108032		
1-1/4	VP229E-32S-	VP229E-32BQS	Threaded	9112108032	Yes	
1-1/4	VP229E-32HN-	VP229E-32BQHNT	Threaded	9112108032		
1-1/2	VP220E-40S-	VP220E-40CQS	Threaded	9112108040	Yes	F-27934
2	VP220E-50S-	VP220E-50CQS	Threaded	9112108050	Yes	
2-1/2	VP220A-65S-	VP220A-65CQS	Flanged		Yes	
2-1/2	VP220A-65H	VP220A-65CQH	Flanged		Yes	
3	VP220A-80S-	VP220A-80CQS	Flanged		Yes	
3	VP220A-80H	VP220A-80CQH	Flanged		Yes	
4	VP220A-100S-	VP220A-100CQS	Flanged		Yes	
4	VP220A-100H	VP220A-100CQH	Flanged		Yes	
5	VP220A-125S-	VP221A-125CQS	Flanged		Yes	F-27939
5	VP220A-125H-	VP221A-125CQH	Flanged		Yes	
6	VP220A-150S-	VP221A-150CQS	Flanged		Yes	
6	VP220A-150H-	VP221A-150CQH	Flanged		Yes	
8	VP222A-200S-	VP222A-200CQS	Flanged		Yes	
8	VP222A-200H-	VP222A-200CQH	Flanged		Yes	
10	VP222A-250S-	VP222A-250CQS	Flanged		Yes	
10	VP222A-250H-	VP222A-250CQH	Flanged		Yes	

11. Pressure Independent Balancing and Control Valves and Actuators

Table 16. Selection: Valve Actuator Codes

Actuator Part Number	Actuator Code	Valve Sizes	Non Spring Return	Spring Return Open	Spring Return Close
MP131-24T	A101	$1 / 22^{\prime \prime} . .11 / 4^{\prime \prime}$	\checkmark		
MP131-24F	F101				
MP131-24MP	S101				
MP300-SRU	U201			\checkmark	
MP300-SRD	U301				\checkmark
MP500C	U131	$11 / 22^{\prime \prime} . .4{ }^{\prime \prime}$	\checkmark		
MP500C-SRU	U231			\checkmark	
MP500C-SRD	U331				\checkmark
MP2000-NSR	U161	$5 "$ and $6 "$	\checkmark		
MP2000-SRU	U261			\checkmark	
MP2000-SRD	U361				\checkmark
MP4000	U181	8" and 10"	\checkmark		

Table 17. Selection: $1 / 22^{\prime \prime} \ldots 2^{\prime \prime}$ Valve Body Tail Pieces

11. Pressure Independent Balancing and Control Valves and Actuators

PIBCV Dimensions:
Threaded ½"...2"

Dimensions

Threaded Valves $1 / 2$ to $1 \frac{1}{4 \prime \prime}$ " (inches)

,
$1 / 2$ to $11 / 4$ " with close off cap \qquad

With MP131 Actuator

Table 18. Threaded Valves $1 / 2$ to $1 \frac{1}{4}$ " (inches)

Type	L1	L2	$\begin{gathered} \text { L3 } \\ (\mathrm{PLUGS}) \end{gathered}$	L4			L5		H1	H2	H3		$\begin{gathered} \text { b } \\ \text { ISO } \\ 228 / 1 \end{gathered}$	Valve Body Weight (lb.)
				MP131	$\begin{gathered} \text { MP300 } \\ \text {-SRU } \end{gathered}$	$\begin{gathered} \text { MP300 } \\ \text {-SRD } \end{gathered}$	MP131	MP300 -SRU/SRD			MP131	MP300 -SRU/SRD		
$\begin{gathered} \text { 1/2" } \\ \text { VP228E- } \\ \text { 10Lx } \\ \hline \end{gathered}$	2	1.41	3.11	4.37	5.11	5.90	5.35	5.7	2.9	. 78	5.6	7.2	G ½	. 83
1/2"	2.5	1.7		4.64	5.39	6.14			3	1	5.7	7.4	G 3/4	1
3/4"	3.2	2.2		4.96	5.7	6.53			3	1.2	5.8	7.5	G 1	1.43
$1{ }^{\prime \prime}$	4	2.7		5.55	6.3	7.08			3.5	1.5	6.14	7.83	G $111 / 4$	3.2
11/4"	5.1	3.5		6.26	7	7.8			3.9	2.3	6.58	8.27	G 1 ½	4.8

NOTE: Valve Body Tail Piece Dimensions: See Columns A and B on page 207.
For assemblies with Female NPT: $\mathrm{L} 6=(2 x$ Column A $-2 x$ Column B) $+\mathrm{L} 1$

Table 19. Threaded Valves $11 / 2^{\prime \prime}$ and 2" (inches)

Type	L_{1}	L_{2}	H_{1}	H_{2}	H_{3}	b ISO 228/1	Valve Body Weight Ib
$1 \frac{1}{2 \prime \prime}$	4.33	7.19	6.7	6.85	11	G 2	15.8
$2^{\prime \prime}$	5.11			G 212			

NOTE: Valve Body Tail Piece Dimensions: See Columns A and B in Table 17 page 207.
For assemblies with Female NPT: L6= ($2 \times$ Column A $-2 \times$ Column B) +L 1
11. Pressure Independent Balancing and Control Valves and Actuators

PIBCV Dimensions: 2½"...6" Flanged Valves

Table 20. Flanged Valves $2 ½^{\prime \prime} \ldots 4^{\prime \prime}$ (inches)

Type	L_{1}	L_{2}	H_{1}	H_{2}	H_{3}	a (EN 1092-2)	Valve Body Weight (lb)	No. of Flange Bolt Holes
$21^{\prime \prime \prime}$	11.4	8.76	8.6	6.77	13	7.2	84	4
$3^{\prime \prime}$	12.2	8.88	8.9	6.96	13.1	7.87	99	4
$4^{\prime \prime}$	13.7	10.07	9.44	7.36	13.7	8.66	126	8

Table 21. Flanged Valves 5" and 6" (inches)

Type	L_{1}	L_{2}	H_{1}	H_{2}	H_{3} MP2000-SRU/SRD/ NSR	a (EN 1092-2)	Valve Body Weight (lb.)	No. of Flange Bolt Holes
$5^{\prime \prime}$	15.7	14.45	10.7	21.1	20.94	9.84	188	8
$6^{\prime \prime}$	18.9	15.88	12.1	19.6	22.36	11.22	304	8

11. Pressure Independent Balancing and Control Valves and Actuators

Flanged Valves 8" and 10"

8", 10 "

8", 10" with MP4000

Table 22a. Flanged Valves 8" and 10" (inches) See Table 22b for Valve Flange Adapters.

Type	L_{1}	L_{2}	H_{1}	H_{2}	H_{3} MP4000	a (EN 1092-2)	Valve Body Weight (lb.)	No. of Flange Bolt Holes
$8 "$	23.6	19.57	17.0	19.0	24.3	13.38	482	12
$10 "$	28.7	22.98	16.9	20.9	27.8	15.9	753	12

Table 22b. Valve Flange Adapters 8" and 10"

Specifications and Part Numbers			
Size	8"' $^{\prime \prime}(200 \mathrm{~mm})$	$10^{\prime \prime}(250 \mathrm{~mm})$	
Part Number	D2576-16-200	D2576-16-250	
Bolt Hole Diameter	$.8^{\prime \prime}(22 \mathrm{~mm})$	$1.02^{\prime \prime}(25.9 \mathrm{~mm})$	
Bolt Circle	$11.61^{\prime \prime}(294.89 \mathrm{~mm})$	$13.98^{\prime \prime}(355.09 \mathrm{~mm})$	
Pressure	PN16		
d	$8.63^{\prime \prime}(219.1 \mathrm{~mm})$	$10.75^{\prime \prime}(273 \mathrm{~mm})$	
D	$13.39^{\prime \prime}(340 \mathrm{~mm})$	$15.94^{\prime \prime}(405 \mathrm{~mm})$	
C	$11.61^{\prime \prime}(295 \mathrm{~mm})$	$13.98^{\prime \prime}(355 \mathrm{~mm})$	
Number of Bolts			
h	$0.87^{\prime \prime}(22 \mathrm{~mm})$	12	
t	$1.024^{\prime \prime}(26 \mathrm{~mm})$	$1.14^{\prime \prime}(29 \mathrm{~mm})$	
Weight	$24.03 \mathrm{lbs}(10.9 \mathrm{~kg})$	$39.68 \mathrm{lbs}(18.0 \mathrm{~kg})$	
Material	Carbon Steel	Carbon Steel	
IMPA/ISSA Code	734554 735564	734555	

11. Pressure Independent Balancing and Control Valves and Actuators

PIBCV Valve Flow
Ranges: ½"...2"

Table 23. $1 / 2 \ldots 2^{\prime \prime}$ Valve Flow Ranges $\left(Q_{\min }\right.$ to $\left.Q_{\text {nom }}\right)$

Flow Rate (GPM)	1/2"				3/4"		$1 "$		11/4"		$11 / 2 "$	2"
Without PT Ports	VP228E10BQLNT	$\begin{aligned} & \text { VP228E- } \\ & \text { 15BQLNT } \end{aligned}$	$\begin{aligned} & \text { VP228E- } \\ & \text { 15BQSNT } \end{aligned}$	$\begin{aligned} & \text { VP229E- } \\ & \text { 15BQHNT } \end{aligned}$	$\begin{aligned} & \text { VP228E- } \\ & \text { 20BQSNT } \end{aligned}$	$\begin{aligned} & \text { VP229E- } \\ & \text { 20BQHNT } \end{aligned}$	$\begin{array}{\|l} \text { VP229E- } \\ \text { 25BQSNT } \end{array}$	$\begin{aligned} & \text { VP229E- } \\ & \text { 25BQHNT } \end{aligned}$	$\begin{aligned} & \text { VP229E- } \\ & \text { 32BQSNT } \end{aligned}$	$\begin{aligned} & \text { VP229E- } \\ & \text { 32BQHNT } \end{aligned}$	-	-
With PT Ports	$\begin{aligned} & \text { VP228E- } \\ & \text { 10BQL } \end{aligned}$	$\begin{aligned} & \text { VP228E- } \\ & \text { 15BQL } \end{aligned}$	$\begin{aligned} & \text { VP228E- } \\ & \text { 15BQS } \end{aligned}$	-	$\begin{aligned} & \text { VP228E- } \\ & \text { 20BQS } \end{aligned}$	-	$\begin{aligned} & \text { VP229E- } \\ & \text { 25BQS } \end{aligned}$	-	$\begin{aligned} & \text { VP229E- } \\ & \text { 32BQS } \end{aligned}$	-	$\begin{aligned} & \text { VP220E- } \\ & \text { 40CQS } \end{aligned}$	$\begin{aligned} & \text { VP220E- } \\ & \text { 50CQS } \end{aligned}$
0.5	1	1	1									
1.0		1	1	1	1							
1.5			1	1	1	1	1					
2.0			1	1	1	1	1					
2.5				1	1	1	1	1				
3.0				1	1	1	1	1	1			
3.5				1	1	1	1	1	1	1		
4.0				1	1	1	1	1	1	1		
4.5				1	(1)	1	1	1	1	1		
5.0				1		1	1	1	1	1		
5.5				(1)		1	1	1	1	1		
6.0						1	1	1	1	1		
6.5						1	1	1	1	1		
7.0						1	1	1	1	1		
7.5						1	1	1	1	1		
8.0						(1)	(1)	1	1	1		
8.5								1	1	1		
9.0								1	1	1		
9.5								1	1	1		
10								1	1	1		
11								1	1	1		
12								1	1	1		
13								(1)	1	1	1	
14									1	1	1	
15									(1)	1	1	
16										1	1	
17										1	1	
18										(1)	1	
19										(1)	1	
20											1	
21											1	
22											1	1
23											1	1
24											1	1
25											1	1
26											1	1
27											1	1
28											1	1
29											1	1
30											1	1
31											1	1
32											1	1
33											1	1
34												1
35												1
36												1
37												1
38												1
39												1
40												1
44												1
48												1
52												1
55												1
high setting)												

[^19]All flanged valves come standard with PT ports
11. Pressure Independent Balancing and Control Valves and Actuators

PIBCV Valve Flow Ranges: 2½...10" Flanged

Table 24. $2^{1} / 2^{\prime \prime} \ldots 10^{\prime \prime}$ Flanged Valve Flow Ranges ($Q_{\min }$ to $Q_{\text {nom }}$)

Size	2-1/2"		3 "		4 "		5"		$6 "$		8"		10"	
Flow Rate (GPM)	VP220A65CQS	$\begin{aligned} & \text { VP220A- } \\ & 65 \mathrm{CQH} \end{aligned}$	VP220A80CQS	VP220A- 80CQH	VP220A100CQS	$\begin{aligned} & \text { VP220A- } \\ & \text { 100CQH } \end{aligned}$	$\begin{aligned} & \text { VP221A- } \\ & \text { 125CQS } \end{aligned}$	$\begin{aligned} & \text { VP221A- } \\ & 125 \mathrm{CQH} \end{aligned}$	VP221A- 150CQS	$\begin{aligned} & \text { VP221A- } \\ & \text { 150CQH } \end{aligned}$	$\begin{aligned} & \text { VP222A- } \\ & \text { 200CQS } \end{aligned}$	$\begin{aligned} & \text { VP222A- } \\ & \text { 200CQH } \end{aligned}$	$\begin{aligned} & \text { VP222A- } \\ & \text { 250CQS } \end{aligned}$	$\begin{aligned} & \text { VP222A- } \\ & \text { 250CQH } \end{aligned}$
35	34													
40	1													
45	1	44												
50	1	1	48											
55	1	1	1											
60	1	1	1											
65	1	1	1											
70	1	1	1	70	66									
75	1	1	1	1	1									
80	1	1	1	1	1									
85	85	1	1	1	1									
90		1	1	1	1									
95		1	1	1	1									
100		110	1	1	1	104								
120			120	1	1	1								
140				1	1	1								
160				176	165	1	158							
180						1	1							
200						1	1	194						
250						260	1	1						
300							1	1	256					
350							1	1	1	332	352			
400							395	1	1	1	1			
450								485	1	1	1	475		
500									1	1	1	1	528	
550									1	1	1	1	1	
600									640	1	1	1	1	
650										1	1	1	1	652
700										1	1	1	1	1
750										1	1	1	1	1
800										830	880	1	1	1
850												1	1	1
900												1	1	1
950												1	1	1
1000												1	1	1
1100												1188	1	1
1200													1320	1
1300														1
1400														1
1500														1
1600														1630
1700														

MP131-24T, 24F, 24MP Floating and Proportional
 Actuators

Actuators for Floating and Proportional Control

Product Description

MP131 actuators are used together with automatically balanced combination valve type SmartX PIBCV for $1 / 2^{\prime \prime}$ to $1-1 / 4$ ". Typical applications are temperature control and permanent automatic balancing on terminal units (fan-coils, chilled ceilings, air-handling units).

Specifications

Part Numbers	MP131-24F, MP131- 24MP, MP131-24T
Power supply	24 Vac +10... -15 \%

Features

- Gap detection at stem up position
- 3 point version
- Force switch-off at stem down position prevents overload of actuator and valve
- No tools required for mounting
- Maintenance-free lifetime
- Low-noise operation

Dimensions (mm)

Mounting and Installation

The actuator should be mounted with the valve stem in either horizontal position or pointing upwards. The actuator is fixed to the valve body by means of a ribbed nut which requires no tools for mounting. The ribbed nut should be tightened by hand.

1. Check the valve neck. The actuator should be in stem up position (factory setting) and mounted securely on the valve body.
2. Wire the actuator according to the wiring diagram.
3. Stem movement is indicated by the Position Indicator (a small pin riding in a channel as shown in (1) below).

11. Pressure Independent Balancing and Control Valves and Actuators

Spring Return Multi-signal Actuators for VP228E/VP229E SmartX PIBCV, DN10-32 (1/2"-11/4")

Product Description

MP300-SRU/SRD actuators with Floating and Proportional control are low voltage motoric actuators for the SmartX PIBCV DN10-32 (1/2"...11/4") Valves. These actuators have a spring return safety function that provides for an open or close valve in the event of power loss. The Spring return safety function should not be used for two position control.

Specifications

Power supply	$24 \mathrm{~V}(-15 \ldots+10 \%) \mathrm{AC}$
Power consumption	9 VA
Frequency	50/60 Hz
Control input Y	$\begin{array}{r} 0 \ldots 10(2 \ldots 10) \mathrm{V} \\ 0 \ldots . .20(4 \ldots 20) \mathrm{mA} \\ \hline \end{array}$
Output signal U	$0 \ldots 10(2 \ldots 10) \mathrm{V}$
Closing force	300 N
Max. stroke	5.5 mm
Speed	11.75 (60 hz) s/mm 14 (50 hz) s/mm
Max. medium temperature	$120^{\circ} \mathrm{C}$
Ambient temperature	$0 \ldots 55^{\circ} \mathrm{C}$
Storage and transport temp.	$-40 . .70^{\circ} \mathrm{C}$
Grade of enclosure	IP 54
Sound power level **	40 dB (A)
** Consideration should be given to the noise of mechanical spring return actuators in hotel guest rooms or other applications requiring silent operation.	
Weight	0.8 kg
EMC Directive \& Standards LVD Directive \& Standards RoHS2 Directives	2014/30/EU EN 61000-6-2 \& EN 61000-6-3 $2014 / 35 / E U$ EN 60730-1 \& EN 60730-2-14 $2011 / 65 / E U$ \& RoHS2 Amendment 2015/863/EU
UL CSA	c-UL-us LISTED using UL 60730-1 \& -2 -14 and CSA/CAN E60730-1A \& -2 -14

Part Numbers

Part Number	SR Direction	Linkage (incl. with actuator)
MP300-SRU	Up - Normally Open	Adapter *
MP300-SRD	Down - Normally Closed	Spacer

[^20]
11. Pressure Independent Balancing and Control Valves and Actuators

Multi-Signal Non-Spring/Spring Return Actuators for VP220x SmartX PIBCV, DN40... 100 (112...4")

Product Description

MP500C are linear electro-mechanical actuators for use with VP220x SmartX PIBCV valves, DN40...100, controlled by either an increase/decrease floating signal or by a range of modulating control signals in the range $0 \ldots 10 \mathrm{~V}$. SRU/SRD models have a spring return feature. The U-Bolt connection allows quick and easy direct mounting onto the SmartX PIBCV VP220 valves.

Specifications

MP500C MP500C-SRU MP500C-SRD	Non-Spring Return Stem up (retract) Stem down (extend)
Voltage supply	$\begin{array}{r} 24 \mathrm{Vac} \pm 20 \% 50-60 \mathrm{~Hz} \\ 24 \mathrm{Vdc} \pm 20 \% \end{array}$
Power consumption MP500C-SRU/SRD: Running Rest MP500C	$\begin{array}{r} 30 \mathrm{VA}(21 \mathrm{~W}) \\ 7 \mathrm{~W} \\ \text { average } 15 \mathrm{VA} \end{array}$
Running Time Modulating Increase/decrease MP500C-SRU/SRD Spring Return:	15 sec. 60/300 sec. (selectable) 13 sec.
Transformer Sizing	50 VA
Stroke	2... 35 mm
Force, nominal	500 N
Duty cycle	20\%/60 minutes (full load, high amb. temp.) 80\%/60 min. (half load, room temp.)
Analog input Voltage range (selectable)	$\begin{array}{r} 0 \ldots 10,2 \ldots 10,0 \ldots 5,2 \ldots 6 \\ 5 \ldots 10,6 \ldots 10 \mathrm{Vdc} \end{array}$
Impedance	Min. 100 k Ohm
Digital inputs Voltage across open input Current through closed input Pulse time	$\begin{array}{r} 24 \mathrm{Vac} \\ 5 \mathrm{~mA} \\ \mathrm{~min} .20 \mathrm{~ms} \end{array}$
Position Feedback MP500C MP500C SRU/SRD	2... 10 Vdc 2-10 Vdc or 0-5 Vdc (0-100\%) - Load 2 mA
Environmental Operation Temperature Storage Temperature Ambient Humidity	$\begin{array}{r} 14 \ldots 122^{\circ} \mathrm{F}\left(-10 \ldots 50^{\circ} \mathrm{C}\right) \\ -13 \ldots 149^{\circ} \mathrm{F}\left(-25 \ldots 65^{\circ} \mathrm{C}\right) \\ \text { max } 90 \% \mathrm{RH} \\ \text { (non-condensing) } \end{array}$
Enclosure rating	IP54 (NEMA 2)

MP500C, MP500C-SRU/SRD Multi-Signal Actuators

Features

- Brushless DC motor.
- High resolution control board allows precise fluid control.
- Working range and end point switches adjusted automatically to the stroke of the valve.
- When driven electrically, firmware calibrates a consistent running time regardless of the valve stroke.
- During power loss SRU/SRD spring return drives the motor, generating power to the board, controlling braking speed which avoids mechanical stress and system water hammer.
- Actuators can be configured for either 3 point increase/ decrease signal or various modulating control signals including sequencing.
- Stroke Indicators on the yoke provide clear visual indication of the valve opening/stroke status.

Sound power level	
MP500-SRU/SRD	43 dba
MP500C	32 dba
Standards	
Heat	IEC-68-2-2
Humidity	IEC-68-2-3
Cold	IEC-68-2-1
Vibration	IEC-68-2-6

Regulatory Compliance: c-UL-us LISTED mark compliance per UL 60730-1 \& -2-14 and CAN/CSA E60730-1 \& -2-14.
CE mark compliance per directives [2014/35/EU] LVD,
[2014/30/EU] EMC, and [2011/65/EU] RoHS2.
RCM mark compliance for Australia/New Zealand community.
Material

Housing	Aluminum
Max cable core diameter	$2.5 \mathrm{~mm}^{2}$
Cover	Aluminum
MP500C SRU/SRD	ABS/PC plastic
MP500C	SPDT, 24 Vac 4A AC1:
S2 Auxillary Switch Relay (optional	contacts made at
accessory)	1) 5% and
	2) 95% of end stroke

Weight	
MP500C-SRU/SRD:	$2.8 \mathrm{Kg}(6.17 \mathrm{Ibs})$
MP500C	$1.8 \mathrm{Kg}(3.96 \mathrm{lbs})$

Part Numbers \& Accessories

Part Number	Description	On Power Loss
MP500C	Non-Spring Return Actuator	-
MP500C-SRU	Spring return stem up	Valve Open
MP500C-SRD	Spring return stem down	Valve Closed
880-0104-000	S2 auxiliary end point switches	-

11. Pressure Independent Balancing and Control Valves and Actuators

> SR and NSR Multi-Signal Actuators for VP221 SmartX PIBCV, DN125-150 (5"...6")

MP2000-SRU/SRD/NSR Multi-Signal Actuators

Product Description

MP2000 SRU/SRD/NSR Actuators with spring return safety function and non-spring return are for fine regulation of large control valves under the demand of the HVAC controller. MP2000 SR can be controlled by either a modulating or a 3-point control signal and is used specifically with the VP221x SmartX PIBCV valves.

Specifications

Nominal voltage	$24 \mathrm{Vac} / \mathrm{Vdc}, 50 \mathrm{~Hz} / 60$
Hz	

Output U $0 \ldots 10 \mathrm{~V}(2 \ldots 10 \mathrm{~V})$
(Position Feedback)
0 ... $10 \mathrm{~V}(2 \ldots 10 \mathrm{~V})$
$10 \mathrm{k} \Omega$
0... $20 \mathrm{~mA}(4 \ldots 20 \mathrm{~mA})$ 510Ω

Force	$2000 \mathrm{~N}(450 \mathrm{lbf})$
Stroke	$50 \mathrm{~mm} \mathrm{(2")}$

Speed (selectable)	4 or $6 \mathrm{~s} / \mathrm{mm}$
Max. medium temperature	$200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$
Ambient temperature	$0 \ldots+55^{\circ} \mathrm{C}$
	$\left(32 \ldots 131^{\circ} \mathrm{F}\right)$
Storage and transport	$-40 \ldots+70^{\circ} \mathrm{C}(-40 \ldots$
temperature	$\left.158^{\circ} \mathrm{F}\right)$

(storing for 3 days)

Humidity	5...95\%
Protection class	III safety extra-low
	voltage
Grade of enclosure	IP 54, NEMA Type 2
Weight	8.6 kg (18.96 lbs)
	6.26 kg NSR (13.8 lbs)
Safety function	Yes
Safety fuction runtime 50 mm stroke	120 s
Manual operation	Electrical and Mechanical

Power failure response
MP2000-SRD Safety function:
MP2000-SRU Safety function:
stem extends down stem retracts up

Features

- Manual operation mechanical and/or electrical
- Position indication, LED signalization
- Selectable speed 4 or $6 \mathrm{~s} / \mathrm{mm}$ (3 or $6 \mathrm{~s} / \mathrm{mm}$ NSR)
- Automatic Stroke Calibration
- Linear to EQ\% Curve Adaptation
- Anti-oscillation function
- Voltage or current output signal U
- Auto detection of Y signal
- 3-point or modulating control selection
- Thermal and overload protection
- Precise regulation and fast response on floating signal (0.01 s)

Standards/Directives

Heat
IEC 60068-2-2
Humidity
Cold IEC 60068-2-3
IEC 60068-2-1
Vibration
IEC 60068-2-6
Regulatory Compliance: c-UL-us LISTED mark compliance per UL 60730-1 \& -2-14 and CAN/CSA E60730-1 \& -2-14. CE mark compliance per directives [2014/35/EU] LVD, [2014/30/EU] EMC, and [2011/65/EU] RoHS2. RCM mark compliance for Australia/New Zealand community.

Part Numbers

Part No.	Spring Return Direction
MP2000-SRD	Stem down, extends (valve closed)
MP2000-SRU	Stem up, retracts (valve open)
MP2000-NSR	Non-Spring Return

Dimensions mm (inch)

Multi-signal Control Actuator for VP222x SmartX PIBCV, DN200... 250 (8...10")

Features

- Manual operation mechanical and/or electrical
- Position indication, LED signalization
- Selectable speed $3 \mathrm{~s} / \mathrm{mm}$ or $6 \mathrm{~s} / \mathrm{mm}$
- Automatic adaptation of stroke to valve's end positions that reduces commissioning time (self-stroking)
- Integrated external switch
- Characteristic optimization
- Adjustable stroke limitation
- Anti-oscillation function
- Pulse or continuous output signal (K2, K4)
- Voltage or current output signal U
- External reset button
- Auto detection of Y signal
- 3-point floating or modulating control selection
- Galvanic isolation Y, U and output terminal K2, K4
- Thermic and overload protection
- Precise regulation and fast response on 3-point signal (0.01 s)

Humidity	$5 \ldots .95 \%$
Protection class	II
Grade of enclosure	IP 54, NEMA 2
Electrical connection	conduit
Weight (kg)	$7.5(16.53 \mathrm{lbs})$
Manual operation	Electrical and me- chanical
Power failure response	Stem remains in last position

Standards	
Heat	IEC 60068-2-2
Humidity	IEC 60068-2-3
Cold	IEC 60068-2-1
Vibration	IEC 60068-2-6
Regulatory Standards	c-UL-us LISTED mark compliance per UL 60730-1 \& -2-14 and CAN/ CSA E60730-1 \& -2-14.
	CE mark compliance per directives
	[2014/35/EU] LVD, [2014/30/EU] EMC and [2011/65/EU] RoHS2
	RCM mark compliance for Australia/
	New Zealand community.

Part Number	MP4000
Power supply	$\begin{array}{r} 24 \mathrm{Vac} / \mathrm{Vdc}(+10, \\ -15 \%) \end{array}$
Power consumption	$15 \mathrm{VA}(24 \mathrm{~V})$
Frequency (Hz)	$50 / 60 \mathrm{~Hz}$
Control input Y	$\begin{array}{r} 0 \ldots 10 \mathrm{Vdc}(2 \ldots 10 \mathrm{Vdc}) \\ \mathrm{Ri}=100 \mathrm{k} \Omega, \\ 0 \ldots 20 \mathrm{~mA}(4 \ldots . .20 \mathrm{~mA}) \\ \mathrm{Ri}=500 \Omega \end{array}$
Control output U (Position Feedback)	$\begin{array}{r} 0 \ldots 10 \mathrm{Vdc}(2 \ldots 10 \mathrm{Vdc}) \\ 2 \mathrm{k} \Omega, \\ 0 \ldots 20 \mathrm{~mA}(4 \ldots 20 \mathrm{~mA}) \\ 550 \Omega \end{array}$
Close off force	4000 N (899.23 lbf)
Max. stroke	80 mm (3.14 in.)
Speed (selectable)	$3 \mathrm{~s} / \mathrm{mm}$ or $6 \mathrm{~s} / \mathrm{mm}$
Max. spindle travel	80 mm (3.14 in.)
Max. medium temperature	$200^{\circ} \mathrm{C}\left(392^{\circ} \mathrm{F}\right)$
Ambient temperature	$\begin{array}{r} 0 \ldots+55^{\circ} \mathrm{C}\left(32 \ldots{ }^{131}\right. \\ \left.{ }^{\circ} \mathrm{F}\right) \end{array}$
Storage and transport temperature	$-40 \ldots+70^{\circ} \mathrm{C}$ $\left(-40 \ldots 158^{\circ} \mathrm{F}\right.$) (storing for 3 days)

Specifications

Please check power supply and power consumption prior connection.
(storng for 3 days)

Product Description

The MP4000 Actuator is primarily designed to regulate valves in response to the demand of a controller in HVAC systems. MP4000 can be controlled by electronic controllers with modulating or 3-point control output.

Foot Mount Actuators

Product Overview

MA－3／4xx Series：These actuators provide two－position operation of dampers，valves，and other equipment requiring the return to normal position upon power interruption．
MC－351／421／431：These actuators provide two－position operation of dampers or valves in heating，ventilating，and air conditioning sys－ tems，and similar applications where return－to－normal position is not required．
MP－3xx Series，MP－4xx Series，MP－2xxx Series，and MP－4xxx Series： These actuators are used for two－position，floating，and proportional control of dampers，valves，and program switches in heating，ventilat－ ing，air conditioning，and similar applications．Hazardous location models offer a sturdy cast aluminum case with bolted cover．They have two 3／4＂pipe tapped openings for joints with rigid metal conduit． All wiring is brought out to separate terminals for ease of installation． These factory enclosure and actuator assemblies are Underwriters Laboratories Listed．
MP－9xxx Series Reversible and Proportional Electric Actuators：These actuators provide control of heavy dampers，large valves，and other high torque applications in heating，ventilating，air conditioning，and similar applications which do not require return to a normal position．
The CP－8301－xXx electronic actuator drive is designed to process a variable 2 to 15 Vdc signal from a controller to provide proportional control of an electric gear train actuator．
The CP－8391－716 and 913 electronic actuator drives are designed to process a variable 4 to 20 mAdc signal from a controller to provide proportional control of an electric gear train actuator．
The CP－9301 and CP－9302 electronic actuator drives process a vari－ able input signal from a controller to provide proportional control of an electric gear train actuator．
（41．）

MA－3 $\bar{x} \bar{x},-M A=4 \bar{x} \bar{x}$（Standard）

Spring Return MP－3／－4xx Series， MP－2／－4xxx Series

Non－Spring Return Spring Return MP－3／－4xx Series，MP－2／－4xxx Series，MC－351／421／431

MA6－3xx，MA6－4xx，MA8－4xx， MA7－4xx
\dagger Hazardous Locations

CP－8301－xxxx．CP－8391－913

12. Other Products

Description

These actuators provide two-position operation of dampers, valves, and other equipment requiring the return to normal position upon power interruption.

Features

- SPST controller.
- Spring return.
- 24,120 and 240 Vac models.
- SPDT auxiliary switch if actuator part number suffix is "-500."
- Rugged die cast aluminum.
- Oil immersed motor and gear train.
- Models for hazardous locations are only available as a factory enclosure/ actuator assemblies
- NEMA 4 with optional watertight conduit connectors, field supplied.

Specifications

Control circuit	CCW to original position when actuator is de-energized
Spring return	SPDT makes (or breaks) circuit at powered end of stroke (fixed)
Auxiliary switch (-500 models)	Actuator sizing should be done in
Nominal damper area	
accordance with damper manufacturer's specifications	

MA-3/4xx Series Two-Position Oil-Submerged Actuators

MA-3xx, MA-4xx, (Standard)

MA6-3xx, MA6-4xx, MA8-4xx, MA7-4xx \dagger Hazardous Locations

Dimensions
Hazardous location actuators
5-3/4 $\times 5-3 / 8 \mathrm{~W} \times 6-9 / 16 \mathrm{D}$ in. $(146 \times 136 \times 167 \mathrm{~mm})$ $8-7 / 8 \mathrm{H} \times 8-1 / 2 \mathrm{~W} \times 10-5 / 8 \mathrm{D}$ in. $(225 \times 216 \times 167 \mathrm{~mm})$ No load timing ${ }^{\text {b }}$ at $75^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right)$ 20 seconds
Agency Listings
UL $873 \quad$ File E9429 Temperature Indicating and Regulating Equipment C22.2 No. 24 File LR 3728
CSA
F-06491
a - When used with gasket (provided) and water-tight conduit connectors (not provided).
b-Spring return timing with full load opposing spring approximately 60 seconds.

Model Table

Model No.	Power Supply		Aux. ${ }^{\text {a }}$ Switch	Input (Watts)	Va Running/ Holding	Rated Torque lb-in. (N-m)	Application and Mounting	Shaft Rotation
	Vac	Hz						
MA-305	24	60	No	25	56/56	16 (1.8)	Damper actuators. Upright position preferred.	CW 180° when power is applied.
MA-305-500	24		Yes					
MA-405	120		No		48/48			
MA-405-500	120		Yes					
MA-318	24		No	70 Running 25 Holding	92/32	60 (6.8)	Damper and valve actuators. Output shaft horizontal.	CW 170° when power is applied.
MA-318-500	24		Yes					
MA-418	120		No		108/42			
MA-418-500	120		Yes					
MA-419	240		No		120/39			
MA-419-500	240		Yes					
MA5-419	240	50	No					
MA5-419-500	240		Yes					

a - 2 FLA, 12 LRA at 24/120 Vac; 1 FLA, 6 LRA 2240 Vac.
\dagger Models for hazardous locations are only available as factory enclosure/actuator assemblies.

Part Numbers for Hazardous Location Applications ${ }^{\text {ab }}$		
Model No.	Damper Actuator Part Numbers for Hazardous Locations	Valve Actuator Part Numbers for Hazardous Locations
MA-305	-	-
MA-305-500	MA6-405	-
MA-405	MA6-405-500	-
MA-405-500	MA6-318-500	-
MA-318	MA6-418	-
MA-318-500	MA6-418-500	-
MA-418		-
MA-418-500	MA6-419-500	MA8-418
MA-419	MA8-418-500	-
MA-419-500	MA7-419-500	
MA5-419		-
MA5-419-500	MA7-419-500	-

a - Class 1, Groups C and D, and Class 2, Groups E, F and G, hazardous locations. Ref. EN-56-2, F-18451
b - Models for hazardous locations are only available as factory enclosure/actuator assemblies.

12. Other Products

Description

This actuator provides two-position operation of dampers or valves in heating, ventilating, and air conditioning systems, and similar applications where return-to-normal position is not required.
Features

- Two-position actuators controlled by SPDT controller.
- Non-spring return
- 24 and 120 Vac models available
- SPDT auxiliary switch is standard.
- Rugged die cast aluminum housings.
- Oil immersed motor and gear train.

Specifications

Three wire, SPDT snap acting switch provided by a thermostat, pressure switch, or relay

Shaft Rotation	Unidirectional clockwise 180° when power is applied
Auxiliary Switch	Adjustable SPDT is standard. Factory
	set to make (or break) at mid-stroke

Nominal Damper AreasActuator sizing should be done in accordance with damper manufacturer's specifications

Environment $\quad-40$ to $136{ }^{\circ} \mathrm{F}\left(-40\right.$ to $\left.58^{\circ} \mathrm{C}\right)$

Shipping and storage	-40 to $136^{\circ} \mathrm{F}\left(-40\right.$ to $\left.58^{\circ} \mathrm{C}\right)$
Operating	-40 to $136^{\circ} \mathrm{F}\left(-40\right.$ to $\left.58{ }^{\circ} \mathrm{C}\right)$

Humidity 5 to 95% RH, non-condensing
Locations NEMA Type 1. NEMA 4 with AM-363

Connections	Coded screw terminals
Case	Die cast aluminum with two $1 / 2 \mathrm{in}$.
conduit knock-outs on each side	

Mounting	Allow $6 \mathrm{in} .(152 \mathrm{~mm})$ clearance above the actuator wiring compartment
Any position	
Ampers	In any upright position with
Valves	actuator above the center line of the valve body.
Dimensions	$7 \mathrm{H} \times 5-3 / 8 \mathrm{~W} \times 6-5 / 16 \mathrm{D}$ in.
	$(178 \times 137 \times 160 \mathrm{~mm})$.
Installation Instructions	$\mathrm{F}-08366$.

Model Table

| Model No. | Input | | | No Load Timing | Rated Torque
 lb-in. (N-m) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Volts | Hz | Watts | VA Rating | |
| MC-351 $\left./ 180^{\circ}\right)$ | | | | | |

Adjustable Auxiliary Switch SPDT Rating Amps

Type	120 V
Running	5.8
Locked Rotor	34.8
Non-Inductive	12.0

12. Other Products

Description

The MP Series Actuators are used for two-position, floating, and proportional control of dampers, valves, and program switches in heating, ventilation, and air conditioning applications or similar applications.
Features

- Proportional actuators with built-in feedback potentiometers.
- Spring return and non-spring return models available.
- $24 \mathrm{Vac}, 120 \mathrm{Vac}$, and 240 Vac models are available.
- Die cast housings with four $1 / 2 \mathrm{in}$. conduit openings.
- Oil-immersed motor and gear train.

Specifications
Input Control signals: Refer to the Model Table for input control signal capability versus specific actuator models.

Floating
Requires one Single Pole Double Throw (SPDT) switch with floating (center off) position rated at 0.9 amps at 24 Vac or two Single Pole Single Throw (SPST) switches rated at 0.9 amps at 24 Vac

Two-position

SPDT Requires snap acting switch rated at 0.9 amps at 24 Vac SPST

Microtherm
Proportional

Standard
Sequencing
Five-position
Slidewire and paralleling
Voltage Vdc (TAC System 8000)

Current mAdc Can be used with certain spring return actuators. Switch must be rated to handle actuator power requirements

Electrical system with the following typical controllers PP-22x Series, TP-1xx Series, TP-2xx Series, TP-3xx Series TP-4xx Series, TP-1xxx Series, and TP-1xxxx Series Control of a single actuator Control of two actuators in sequence Used typically for adjustable minimum position (five positions) of an economizer actuator Requires AE-504 paralleling relay AE-504 accepts 100Ω to 1000Ω slidewires Requires CP-8301-xxx or CP-9301-xxx Series of solid state actuator drives. Refer to the Model Table Requires CP-9302-xxx Series of solid state actuator drives. Refer to the Model Table
Connections
MP-3xx, $4 x x, 2 x x x, 4 x x x$, Models -600 Suffix Coded screw terminals except for input
 signal which are color coded pigtails
Power Requirements Refer to the Model Table to determine power requirements
Torque Refer to the Model Table to determine the actuator torque rating
Nominal damper area
Actuator sizing should be done in
Spring return
accordance with dam

Sping ren in specilions Refer to the Model Table for models that are spring return

Spring Return

Environment

Ambient temperature limits	-40 to $160^{\circ} \mathrm{F}\left(-40\right.$ to $71^{\circ} \mathrm{C}$
Shipping and storage	-40 to $136^{\circ} \mathrm{F}\left(-40\right.$ to $\left.58^{\circ} \mathrm{C}\right)$
Operating	

Operating Humidity 5 to 95% RH, non-condensing Locations NEMA 1 NEMA 4 for non-spring return actuators with AM-363 Dimensions
NSR Models MP-3xx, 4xx, 2xxx, 4xxx $7 \mathrm{H} \times 5-3 / 8 \mathrm{~W} \times 6-5 / 16 \mathrm{D}$ in. $(178 \times 136 \times 160 \mathrm{~mm})$ SR Models -600 Suffix $\quad 7 \mathrm{H} \times 5-3 / 8 \mathrm{~W} \times 8-1 / 8 \mathrm{D}$ in. $(178 \times 136 \times 206 \mathrm{~mm})$ SR plus actuator drive housing
Agency Listings
UL $873 \quad$ File E9429 Temperature Indicating and Regulating Equipment CUL Canadian Standard \#LR 3728 European Community EMC Directive 89/336/EEC and 92/31 EEC Low voltage Directive 72/23 EEC Units with a "-xxx-x-2" suffix identify models that are in compliance with CE Example: MP-xxxx-xxx-x-2

Model Table MP-3xx Series

Model No.	Application	Solid State Drive$\begin{aligned} & \text { CP-8301-xxx, CP-9301 } \\ & \text { CP-9302 } \end{aligned}$	Power Requirements			Output Shaft				Aux. Switch	Built-in Transformera
			Volts	Hz	Amps	Torque lb.-in. ($\mathrm{N}-\mathrm{m}$)	Timing Seconds (No Load)	Degrees of Rotation	Spring Return		
MP-361	Proportional	Available	24	60	2.5	$\begin{array}{\|l\|} \hline 50 \\ (5.6) \end{array}$	90	180 (Adj. ${ }^{\text {b }}$)	CW	SPDT	-
MP-361-600 ${ }^{\text {c }}$		CP-8301-024 Included									
MP-371	Proportional	Available						180 (non Adj.)	CCW	SPDT	
MP-371-600 ${ }^{\text {c }}$		CP-8301-024 Included									
MP-377	Sequencing	-								SPST	
MP-381	Proportional	Available			2.2	$\begin{aligned} & 220 \\ & (24.9) \end{aligned}$	130	180 (Adj. ${ }^{\text {b }}$)	No	SPDT	
MP-382							130 to 1300				
MP-387	Sequencing	Available					130			SPST	

a - Units with a "-2" suffix, e.g. MP-xxxx-xxx-2-x, include a built-in transformer (used for Microtherm or with AE-504) with secondary loads wired externally to terminals seven and eight of the actuator. Red (24 Vac) to terminal eight and Blue ($12 \mathrm{Vac} \mathrm{)} \mathrm{to} \mathrm{terminal} \mathrm{seven} .\mathrm{When} \mathrm{these} \mathrm{actuators} \mathrm{are} \mathrm{used} \mathrm{with} \mathrm{controllers} \mathrm{other} \mathrm{than} \mathrm{Microtherm} \mathrm{or} \mathrm{AE-504} ,\mathrm{disconnect} \mathrm{the} \mathrm{Red} \mathrm{and} \mathrm{Blue} \mathrm{leads} \mathrm{and} \mathrm{tape} \mathrm{off}. \mathrm{Note:} \mathrm{Models}$ prior to "-2" suffix had transformer wired directly to potentiometer. To disconnect the transformer, remove the back plate of the actuator, disconnect, and tape the transformer leads.
b - Rotation adjustable 45 to 320 . Caution: On actuators with proportional input signals changing the rotation will affect the control, since the internal feedback potentiometer's travel is fixed.
c - Integral solid state drive CP-8301 accepts 6-9 Vdc voltage with 20 Vdc power supply included.

MP-3/-4xx, MP-2/-4xxx Series Reversible and Proportional Electric Actuators

MP-4xx Series Model Table

Model No.	Application	Solid State Drive$\begin{aligned} & \text { CP-8301-xxx, } \\ & \text { CP-9301, } \\ & \text { CP-9302 } \end{aligned}$	Power Requirements			Output Shaft				Aux. Switch	
			Volts	Hz	Amps	Torque lb.-in. ($\mathrm{N}-\mathrm{m}$)	Timing Seconds (No Load)	Degrees of Rotation	Spring Return		
MP-422	Proportional	Available	120	60	0.65	60 (6.8)	25 to 250	180 (Adj. ${ }^{\text {b }}$)	No	SPDT	-
MP-423							13	dj			
MP-424							13 to 130	90 (Adj.)			
MP-451						$\begin{aligned} & 220 \\ & (24.9) \end{aligned}$	80	180 (Adj. ${ }^{\text {b }}$)			
MP-452							80 to 800				
MP-453							40	90 (Adj. ${ }^{\text {b }}$)			
MP-454							40 to 400				
MP-461-600	6 to 9 V Proportional	CP-8301-120 Included			0.5	50 (5.6)	90	180 (Adj. ${ }^{\text {b }}$)	CW		
MP-465	Proportional	Available									Yes
MP-471-600	6 to 9 V Proportional	$\begin{aligned} & \text { CP-8301-120 } \\ & \text { Included } \end{aligned}$						180 (non-adj.)		SPDT	-
MP-475	Proportional	Available									Yes
MP-481	Proportional	Available							No	SPDT	
MP-481-600	6 to 9 V Proportional	CP-8301-120 Included						180 (Adj. ${ }^{\text {b }}$)		SPDT	-
MP-481-691 ${ }^{\circ}$		CP-9301 Included									
MP-483	Proportional	Available					65	90 (Adj. ${ }^{\text {b }}$)			Yes
MP-485							130	$180^{\text {b }}$			
MP-486							130 to 1300				
MP-495					0.95	450 (50.9)	130				

a - Units with a "-2" suffix, e.g. MP-xxxx-xxx-2-x, include a built-in transformer (used for Microtherm or with AE-504) with secondary loads wired externally to terminals seven and eight of the actuator. Red (24 Vac) to terminal eight and Blue (12 Vac) to terminal seven. When these actuators are used with con- trollers other than Microtherm or AE-504, disconnect the Red and Blue leads and tape off. Note: Models prior to "-2" suffix had transformer wired directly to potentiometer. To disconnect the transformer, remove the back plate of the actuator, disconnect, and tape the transformer leads.
b-Rotation adjustable 45 to 320°. Caution: On actuators with proportional input signals changing the rotation will affect the control, since the internal feed- back potentiometer's travel is fixed.

MP-2xxx Series

Model No.	Application	Solid State Drive CP-8301-xxx, CP-9301, CP-9302	Power Requirements			Output Shaft				Aux. Switch	
			Volts	Hz	Amps	Torque lb.-in. ($\mathrm{N}-\mathrm{m}$)	Timing Seconds (No Load)	Degrees of Rotation	Spring Return		
MP-2113-500	Proportional	Available	24	60	2.2	50 (5.6)	25	180 (non- Adj.)	No	SPDT	-
MP-2130-500			120		0.5			90 (non- Adj.)			Yes
MP-2150-500								180 (non- Adj.)			

a - Units with a "-2" suffix, e.g. MP-xxxx-xxx-2-x, include a built-in transformer (used for Microtherm or with AE-504) with secondary loads wired externally to terminals seven and eight of the actuator. Red (24 Vac) to terminal eight and Blue (12 Vac) to terminal seven. When these actuators are used with controllers other than Microtherm or AE-504, disconnect the Red and Blue leads and tape off. Note: Models prior to "-2" suffix had transformer wired directly to potentiometer. To disconnect the transformer, remove the back plate of the actuator, disconnect, and tape the transformer leads.
MP-4xxx Series

Model No.	Application	Solid State Drive CP-9301 CP-9302	Power Requirements			Output Shaft				Aux. Switch	
			Volts	Hz	Amps	Torque lb.-in. ($\mathrm{N}-\mathrm{m}$)	Timing Seconds (No Load)	Degrees of Rotation	Spring Return		
MP5-4751	Proportional	Available	240	50	0.25	50 (5.6)	108	180 (non-Adj.)	CCW	SPDT	Yes

a - Units with a "-2" suffix, e.g. MP-xxxx-xxx-2-x, include a built-in transformer (used for Microtherm or with AE-504) with secondary loads wired externally to terminals seven and eight of the actuator. Red (24 Vac) to terminal eight and Blue (12 Vac) to terminal seven. When these actuators are used with con- trollers other than Microtherm or AE-504, disconnect the Red and Blue leads and tape off. Note: Models prior to "-2" suffix had transformer wired directly to potentiometer. To disconnect the transformer, remove the back plate of the actuator, disconnect, and tape the transformer leads.

Description

These actuators provide control of heavy dampers, large valves, and other high torque applications in heating, ventilating, air conditioning, and similar pplications which do not require return to a normal position.

Features

- High torque proportional gear train actuators accept the following signals:
- 100 to 1,000 slidewire (requires AE-504).
- SPDT floating or snap-acting controller.
- Variable Vdc.
- Variable mAdc.
- Torque to $1,600 \mathrm{lb}-\mathrm{in}$.
- Available in 120 Vac models.
- Standard SPDT auxiliary switch.
- Rugged die cast aluminum housings.
- Oil immersed motor and gear train.

Specifications

Control circuit	Requires SPDT switch with neutral (floating) or two-position and proportional
Shaft rotation	Reversible proportional can stop at any point in the stroke
Auxiliary switchAdjustable SPDT snap-acting Factory set to close one contact and open the other at end of CW stroke.	

(4L)
MP-9750 only

Model Table

Model No.		rol	Input	Torque Lb-in. ${ }^{\text {a }}$	Timing Sec.	Stroke	Misc.
	Type	Amp Rating					
MP-9750 ${ }^{\text {b }}$	1,2	0.9 at 120 Vac	$120 \mathrm{Vac}, 60 \mathrm{~Hz}, 0.9 \mathrm{~A}$	800	135	180	Built-in Trans. ${ }^{\text {c }}$
MP-9810	3, 4	1.8 at 120 Vac	$120 \mathrm{Vac}, 60 \mathrm{~Hz}, 1.8 \mathrm{~A}$	1300	115	180	-
MP-9830				1300	60	90	
MP-9910				1600	145	180	

$\mathrm{a}-1 \mathrm{lb}-\mathrm{in} .=0.113 \mathrm{~N}-\mathrm{m}$.
b-UL Listed.
c - Note: MP-9750-xxx-2-x includes a built-in transformer with secondary leads wired externally to terminals 7 and 8 — Red (24 Vac) to 8 and Blue (12 Vac) to 7 .

Compatible Actuators

Actuators	Actuator Drives Input Type			
	Vdc	mA	$\mathrm{Vdc} / \mathrm{mA}$	mA/Vdc
Actuator Model	CP-8301-xxx ${ }^{\text {a }}$	CP-8391-716 ${ }^{\text {a }}$	CP-9301	CP-9302
MP-9750	X		X	X
MP-9810		X		
MP-9830	-	X	-	-
MP-9910				

[^21]
CP-8301 2... 15 Vdc Electronic Actuator Drive

Description

The CP-8301-xxx Series electronic actuator drive is designed to process a variable 2 to 15 Vdc signal from a controller to provide proportional control of an electric gear train actuator.

Features

- Mounts directly onto proportional, electric, gear train actuators.
- 24 and 120 Vac models available.
- Color-coded pigtail leads.

Specifications

Inputs

Control signal
\quad Range
Span, Start point
2 to 15 Vdc Refer to Model Table
Power requirements Refer to Model Table

Power supplies Model Tab Refer to Model Table
Outputs

Connections	Color coded pigtail leads.
Mounting	Directly to an actuator
Case	Bakelite

Environment
Ambient temperature limits

Ambient temperature limis	-40 to $140{ }^{\circ} \mathrm{F}\left(-40\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Shipping and storage	-40 to $1400^{\circ} \mathrm{F}\left(-40\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Operating	5 to $95 \% \mathrm{RH}$, non-condensing
Humidity	NEMA Type 1
Locations	$4 \mathrm{H} \times 4 \mathrm{~W} \times 3-1 / 4 \mathrm{D} \mathrm{in}$.
Dimensions	$(102 \times 102 \times 83 \mathrm{~mm})$

Agency Listings	
UL 873	File \#E9429 Category Temperature
CSA	-Indicating and Regulating Equipment
Installation Instructions	C22.2 No. 24-93

Model Table

Model No.	Power Requirement Vac, 4.8 VA 50/60 Hz (+10/-15\%)	Power Supply	Start Point of Actuator	Span
CP-8301-024	24	$20 \mathrm{Vdc}, 50 \mathrm{~mA}$ regulated and filtered.	Adjustable from 2 to 12 Vdc input. Factory set at 6 Vdc.	Fixed at 3 Vdc for full actuator stroke.
CP-8301-120	120			

a - The power supply must not be connected to +20 (red) of other supplies.
Compatible Actuators

Actuator Series	Power		Torque		Stroke Degrees	Spring Return
	Vac 60 Hz	Amp	Lb-in.	N-m		
MP-2113-500	24	2.2	50	5.6	180	-
MP-361		2.5				CW
MP-371						CCW
MP-381			220	24.9		-
MP-465 ${ }^{\text {a }}$	120	0.5	50	5.6		CW
MP-475 ${ }^{\text {a }}$						CCW
MP-483 ${ }^{\text {a }}$			220	24.9	90	-
MP-485 ${ }^{\text {a }}$					180	
MP-486 ${ }^{\text {a }}$						
MP-495 ${ }^{\text {a }}$		0.95	450	50.8		
MP-9750 ${ }^{\text {a }}$	120	0.9				

a-CAUTION: Remove red and blue transformer wires from terminals 7 and 8 of actuator and tape.

Description

The CP-8391-716 Series electronic actuator drive is designed to process a variable 4 to 20 mAdc signal from a controller to provide proportional control of an electric gear train actuator.

Features

- Mounts directly onto proportional, electric, gear train actuators.
- 4 to 20 mAdc operating range. with 250 impedance with field adjustable ranges of 2 through 7, 2 through 12, 7 through 12, 4 through 12, and 12 through 20 mAdc.
- 120 Vac applications.
- Color-coded pigtail leads.

Compatible Actuators

Actuator Series	Power		Torque		Stroke Degrees	Spring Return
	Vac 60 Hz	Amp	Lb-in.	$\mathrm{N}-\mathrm{m}$		
MP-2130-500 ${ }^{\text {a b }}$	120	0.5	50	5.6	90	
MP-2150-500 ${ }^{\text {ab }}$					180	
MP-465 ${ }^{\text {ab }}$		0.5	50	5.6		CW
MP-475 ${ }^{\text {ab }}$					90	CCW
MP-483 ${ }^{\text {a b }}$			220	24.9		.
MP-485 ${ }^{\text {ab }}$					180	
MP-486 ${ }^{\text {a b }}$						
MP-495 ab		0.95	450	50.8		
MP-9750 ${ }^{\text {a }}$		0.9	800	90		
MP-9830 ${ }^{\text {c }}$		1.8	1300	146.9	90	
MP-9910 ${ }^{\text {c }}$			1600	180.8	180	

a CAUTION: Remove red and blue transformer wires from terminals 7 and 8 of actuator and tape.
b CP-9302 drive may be an alternative solution.
c NOTE: Some MP-9xxx will require two X 6880 mounting extensions.

Specifcations
Inputs
Control signal

$$
\begin{array}{lr}
\text { Range } & 4 \text { to } 20 \mathrm{mAdc}, \text { non-adjustable } \\
\text { Span } & \text { Adjustable } 4 \text { to } 16 \mathrm{mAdc} \\
\text { Start point } & \text { Adjustable from } 2 \text { to } 16 \mathrm{mAdc} \\
\text { Impedance } & 250 \Omega \\
\text { Grounding } & \text { Either input wire can be arounded and }
\end{array}
$$

Grounding will not cause damage, provided the electric gear train actuator is ungrounded
Hysteresis 3 to 5% of 16 mAdc span, nonadjustable (Hysteresis is the difference in input signal between that signal which will drive the actuator shaft one way and the signal which will drive it the other way)

	will drive it the other way) Power requirements signal offset $\pm 1 \%$, maximum
Power consumption	3.5 Va.
Linearity	To control windings of gear train actuators, see "Typical Actuators"
Outputs	Color coded pigtail leads
Connections	Directly to an actuator. The upright position is preferred, but other positions are acceptable
Mounting	Bakelite

Environment

Ambient temperature limits Shipping and storage	-40 to $140^{\circ} \mathrm{F}\left(-40\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Operating	-13 to $140^{\circ} \mathrm{F}\left(-25\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Humidity	5 to $95 \% \mathrm{RH}$, non-condensing
Vibration	1 G maximum in any plane
Dimensions	$4 \mathrm{H} \times 4 \mathrm{~W} \times 3-1 / 4 \mathrm{D}$ in.
	$(102 \times 102 \times 83 \mathrm{~mm})$
Agency Listing	UL Recognized
Installation Instructions	$\mathrm{F}-21220$

12．Other Products

CP－8391－913 Series Electronic Actuator Drive

Description

The CP－8391－913 electronic actuator drive is designed to process a variable 4 to 20 mAdc signal from a controller to provide proportional control of an electric gear train actuator．
Features
－Mounts directly onto proportional，electric，gear train actuators．
－Fixed 4 to 20 mAdc operating range．with 250Ω impedance．
－ 24 and 120 Vac models available．
－Color－coded pigtail leads．

Specifications

Inputs
Control signal
$\begin{array}{lr}\text { Range } & 4 \text { to } 20 \mathrm{mAdc}, \text { non－adjustable } \\ \text { Span } & 16 \mathrm{mAdc} \\ \text { Start point } & 4 \mathrm{mAdc} \\ \text { Impedance } & 250 \Omega\end{array}$
Either input wire can be grounded and will not cause damage，provided the electric gear train actuator is ungrounded
Hysteresis
6 to 9% of 16 mAdc span，nonadjustable （Hysteresis is the difference in input signal between that signal which will drive the actuator shaft one way and the signal which will drive it the other way）

Power requirements	Refer to Model Table
Power Consumption	Refer to Model Table
Linearity	0．15\％of 16 mAdc span
Outputs	To control windings of gear train actuators，see＂Typical Actuators＂
Connections	Color coded pigtail leads
Mounting	Directly to an actuator． The upright position is preferred，but other positions are acceptable
Case	Bakelite
Environment Ambient temperature limits	
Shipping and storage	-40 to $140{ }^{\circ} \mathrm{F}\left(-40\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Operating	-40 to $140{ }^{\circ} \mathrm{F}\left(-40\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Humidity	5 to 95% RH，non－condensing
Vibration	1G maximum in any plane
Dimensions	$4 \mathrm{H} \times 4 \mathrm{~W} \times 3-1 / 4 \mathrm{D}$ in．$(102 \times 102 \times 83 \mathrm{~mm})$
Agency Listing	
$\text { UL } 873$	File \＃E9429 Category Temperature－ Indicating and Regulating Equipment
CSA	C22．2 No．24－93
Installation Instructions	F－22453

Model Table

Model No．	Power Requir Vac， $50 / 60 \mathrm{~Hz}$ 15\％）	Power Consumption			Start Point of Actuator		Span	
CP－8391－913	24	4．8 VA			Factory set at 4 mAdc non－adjustable．	Fixed at 16 mAdc for full actuator stroke．		
Compatible Actuators								
Actuator	Power			Torque		Stroke Degrees	Spring Return	
Series	Vac 60 Hz	Amp		Lb－in．	N－m			
MP－2113－500 ${ }^{\text {a }}$	24	2.2		50	5.6	180	－	
MP－361 ${ }^{\text {a }}$		2.5					CW	
MP－371 ${ }^{\text {a }}$				CCW				
MP－381 ${ }^{\text {a }}$				220	24.9		－	
MP－465 ${ }^{\text {a b }}$	120	0.5			50		5.6	CW
MP－475 ${ }^{\text {ab }}$				CCW				
MP－483 ${ }^{\text {a b }}$				220	24.9	90	－	
MP－485 ${ }^{\text {a b }}$				180				
MP－486 ${ }^{\text {a b }}$								
MP－495 ${ }^{\text {a b }}$			0.95		450	50.8		
MP－9750 ${ }^{\text {a }}$	120		0.9		800	90		

a－CP－9301 may be an alternative solution．
b－CAUTION：Remove red and blue transformer wires from terminals 7 and 8 of actuator and tape

12. Other Products

Description

The CP-9301 and CP-9302 electronic actuator drives process a variable input signal from a controller to provide proportional control of an electric gear train actuator. The CP-9301 is preset at the factory for voltage input. The CP-9302 is factory preset for current input and has additional wiring for connection to an override switch, for those applications requiring an external override of the input signal. These drives are equipped with built-in jumpers and adjustable potentiometers, so that the type of input signal, deadband, input span, and start point may be reset in the field when necessary.

Features

- Mounts directly onto proportional, electric, gear train actuators.
- Power is supplied directly from the actuator.
- Jumpers for selecting either voltage or current input, as well as 3% or 5% deadband.
- Adjustable span and start point potentiometers.

Specifications

Mounting	Directly to an actuator The drive may be mounted on either the left or right side of the actuator, in a conduit opening adjacent to the low voltage wiring compartment.
Case	Injection molded plastic with stamped aluminum cover
Inputs - Voltage and Current Input Refer to Model Table Input Span Adjustment Start Point Adjustment Input Impedance Voltage Input Current Input	Refer to Model Table Refer to Model Table Greater than 10,000 Ω 250Ω
Power Supply	Power shall be supplied directly from the shading coil windings provided on the shaded pole reversible motor of the gear train actuator (less than 30 Vac)

Outputs
Connections
Color-coded leads with crimped screw terminal connectors
Purge override (input signal override) leads are color-coded pigtails

Shading Coil Triac Output	1.2 A RMS Deadband
Refer to Model Table	
Environment	
Ambient temperature limits	-40 to $160^{\circ} \mathrm{F}\left(-40\right.$ to $\left.71^{\circ} \mathrm{C}\right)$.
Shipping \& Storage	-40 to $136^{\circ} \mathrm{F}\left(-40\right.$ to $\left.58^{\circ} \mathrm{C}\right)$.
Operating	5 to $95 \% \mathrm{RH}$, non-condensing.
Humidity	NEMA Type 4; IEC IP56.
Locations	File \#E9429 Category Temperature
Agency Listings	Indicating and Regulating Equipment
UL 873	C22.2 No. 24-93
CUL	EMC Directive $89 / 336 / E E C$
European Community	F-26563
Installation Instructions	

Model Table

Part Number	Input Signal Override	Factory Jumper Settings				Jumper Settings		Potentiometer Adjustment Ranges	
		Input Signal	Deadband	Start Point	Input Span	Input Signal	Deadband	Input Span	Start Point
CP-9301	Not Available	Voltage (6 to 9 Vdc)	3\% of Input Span	6 Vdc	3 Vdc	Voltage or Current	3% or 5% of Input Span	$\begin{aligned} & 3.0 \text { to } 16.5 \\ & \text { Vdc or } 8 \text { to } 16 \\ & \text { mAdc } \end{aligned}$	0 to 10 Vdc or 2 to 16 mAdc
CP-9301-456		Voltage (0 to 10 Vdc)		0 Vdc	10 Vdc				
CP-9302	Available (Use is Optional)	Current (4 to 20 mAdc)		4 mAdc	16 mAdc				
CP-9302-702			5% of Input Span						

Compatible Actuators

Actuator Series	Power		Torque		Stroke Degrees	Spring Return	Internal Transformer ${ }^{\text {a }}$
	Vac 60 Hz	Amp	Lb-in.	$\mathrm{N}-\mathrm{m}$			
MP-2113-500	24	2.2	50	5.6	180	-	No
MP-361	24	2.5	50	5.6	180	CW	No
MP-371	24	2.5	50	5.6	180	CCW	No
MP-381	24	2.5	220	24.9	180	-	No
MP-465	120	0.5	50	5.6	180	CW	Yes
MP-475	120	0.5	50	5.6	180	CCW	No
MP-483	120	0.5	220	24.9	90	-	Yes
MP-485	120	0.5	220	24.9	180	-	Yes
MP-495	120	0.95	450	50.8	180	-	Yes
MP-9750	120	0.9	800	90.3	180	-	Yes

a - Units with a "-2" suffix, e.g. MP-xxxx-xxx-2-x, include a built-in transformer (used for Microtherm ® or with AE-504) with secondary leads wired externally to terminals 7 (Blue, 12 $\mathrm{Vac})$ and 8 (Red, 24 Vac) of the actuator.
Caution: When using the CP-9301 or CP-9302 with actuators containing an internal transformer, disconnect and tape off the red and blue leads before installing and powering the device. Failure to do so can result in damage to the actuator drive.
Note: Models prior to "-2" suffix had transformer wired directly to potentiometer. To disconnect the transformer, remove the back plate of the actuator, then disconnect and tape the transformer leads.

Ecostruxure

 Innovation At Every Level
Processing 1.35 Million Barrels of Oil per Day—Safely, Reliably, and Profitably

How Jamnagar Refinery, the world's largest refining and petrochemical complex, turned industrial automation into the profit engine of their business

Guide Specification Text

Overview

This Guide Specification is specifically designed to empower specifiers with a tool that enables fast and simple specification of Schneider Electric valves and actuators. This comprehensive guide details both product and application specific information that assists specifiers in the selection process.

Want more valve and actuator specification horsepower? Test drive our Valve, Assembly and Damper Actuator Selection Tool here.

Visit us at Schneider Electric.com
Or
Contact your local Sales Representative

Smart Buildings Start with Connected Devices that Deliver Critical Information to the BMS.
Note: Delete text and components not required for project.
Application engineer bidding notes in this document are shown in green text.

Section 230900 - INSTRUMENTATION AND CONTROL FOR HVAC

2.15 ACTUATORS

A. Electronic Direct Couple Damper (and Valve) Actuators

[Schneider Electric SmartX Actuators]

1. Manufactured, brand labeled or distributed by Schneider Electric
2. Direct-coupled type non-hydraulic designed for minimum 100,000 full-stroke cycles at rated torque.
3. Direct-coupled damper actuators must have a five-year warrantee.
4. Size for torque required for damper seal at maximum design conditions and valve close-off pressure for system design.
5. Direct-coupled damper actuators should accommodate $3 / 8^{\prime \prime}, 1 / 2^{\prime \prime} 1.05^{\prime \prime}$ round or $3 / 8^{\prime \prime} \ldots 1 / 2^{\prime \prime}$ and $3 / 4^{\prime \prime}$ square damper shafts.
6. Actuator operating temperature minimum requirements: 44,88 and 133 lb .-in. are $-25^{\circ} \mathrm{F} \ldots 130^{\circ} \mathrm{F}$ $\left(-32{ }^{\circ} \mathrm{C} \ldots 55^{\circ} \mathrm{C}\right)$. The 30, 35, 60, 150 and 300 lb .-in. are $-25^{\circ} \mathrm{F} \ldots 140^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C} \ldots 60^{\circ} \mathrm{C}\right)$. The 270 Ib.-in. are $-22^{\circ} \mathrm{F} \ldots 122^{\circ} \mathrm{F}\left(-30^{\circ} \mathrm{C} \ldots 50^{\circ} \mathrm{C}\right)$.
7. Overload protected electronically throughout rotation except for selected Floating actuators the have a mechanical clutch.
8. Spring Return Actuators: Mechanical fail safe shall incorporate a spring-return mechanism.
9. Non-Spring Return Actuators shall stay in the position last commanded by the controller.
10. Power Requirements: 24Vac/dc [120Vac] [230Vac]
11. Proportional Actuators controller input range from $0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}$ or $4 \ldots 20 \mathrm{~mA}$ models.
12. Housing: Minimum requirement NEMA type 2
13. Actuators with a microprocessor should not be able to be modified by an outside source (cracked or hacked).
14. Actuators of 133 and 270 lb .-in. of torque or more should be able to be tandem mount or "gang" mount.
15. Agency Listings: ISO 9001, cULus, CE and CSA

B. $1 / 2$ "... $3 / 4$ " Ball Valve Electronic Actuators

[Schneider Electric VBB/VBS ball valves actuators]

1. Manufactured, brand labeled or distributed by Schneider Electric.
2. Size for torque required for valve close-off pressure for system design.
3. Coupling: Direct coupled to the valve body without the use of external devices or tools (snap-on).
4. Auxiliary End Switch (optional) is to be SPST $24 \mathrm{Vac} / \mathrm{Vdc}, 101 \mathrm{~mA}$ to 5 mA maximum on selected two-position models.
5. Controller Signal Two-position, Floating or Proportional ($0 \ldots 5 \mathrm{Vdc}, 0 \ldots 10 \mathrm{Vdc}, 5 \ldots 10 \mathrm{Vdc}$, or $4 \ldots 20$ $\mathrm{mA} \mathrm{dc})$. The design allows for changing selections via DIP switches without removal of cover.
6. Manual operating lever and position indicator must be standard on all models.
7. Power Requirements: 24 Vac for floating, proportional, and 110... 230 Vac for two position multivoltage types
8. Actuators must be available with either Spring Return (SR) or Non-Spring Return (NSR) models.
9. Operating Temperature Limit Floating is to be $32 \ldots 140^{\circ} \mathrm{F}\left(0 \ldots 60^{\circ} \mathrm{C}\right)$ Proportional $32 \ldots 140^{\circ} \mathrm{F}$ ($0 \ldots 60^{\circ} \mathrm{C}$) Two-Position $32 \ldots 169^{\circ} \mathrm{F}\left(0 \ldots 76^{\circ} \mathrm{C}\right)$
10. Wiring (depending on model) Removable Terminal Block, 10 ft . (3.05 m) Plenum Cable, 18 in . (45 cm) Appliance Wire
11. Locations must be rated NEMA 2, IEC IP31. (Indoor Use Only.) Actuators with terminal block or plenum cable leads are plenum rated per UL file number E9429.
12. Agency Listings: ISO 9001, cULus, and CE.
13. Schneider Electric shall warrant all components for a period of 5 years from the date of production.
C. 2-way ($1 / 2$ "...3") and 3-way ($1 / 22^{\prime \prime} . .2$ ") Ball Valve Actuators
[Schneider Electric VB-2000 ball valves actuators]
14. Manufactured, brand labeled or distributed by Schneider Electric.
15. Size for torque required for valve close-off pressure for system design.
16. Actuators are to be available in spring return (SR) and non-spring return (NSR) models. Spring Return (SR) actuators are to provide a choice to return direction.
17. Actuators are to be available in models for two-position, floating and proportional control.
18. All actuator models are to be equipped with pigtail leads
19. Actuators must be available in models with manual override.
20. Actuators must be available in models with auxiliary switch(es).
21. Operating temperatures: Non-Spring Return (NSR) actuators with 44 and 88 lb .-in. of torque must be -25 to $130{ }^{\circ} \mathrm{F}\left(-32\right.$ to $\left.55^{\circ} \mathrm{C}\right)$. All other actuators are -22 to $140{ }^{\circ} \mathrm{F}\left(-30\right.$ to $\left.60{ }^{\circ} \mathrm{C}\right)$
22. Actuators must be NEMA 2 rated.
23. All actuators are to have a five-year warranty.
24. Agency Listings: ISO 9001, cULus, and CE.
D. Zone Valve Actuators-Two-position Spring Return (SR)
[Schneider Electric Erie Zone Valve PopTop ${ }^{\text {TM }}$ Two-position valve actuators]
25. Manufactured, brand labeled or distributed by Schneider Electric.
26. Valves are to be two-position (On-Off), spring return (SR) with general or High Close Off models.
27. Actuator Voltage Models are $24 \mathrm{Vac} @ 50 / 60 \mathrm{~Hz}, 110 \mathrm{Vac} @ 50 \mathrm{~Hz}$ and $120 \mathrm{Vac} @ 60 \mathrm{~Hz}, 230 \mathrm{Vac}$ @ $50 \mathrm{~Hz}, 240 \mathrm{Vac}$ @ $60 \mathrm{~Hz}, 208 \mathrm{Vac}$ @ 50/60 Hz., 277 Vac @50/60 Hz.
28. End (auxiliary) Switch, $24-240$ Vac Models: 24... $250 \mathrm{Vac} / 101 \mathrm{~mA}$ min. to 5 A max. and 9... 30 Vdc @ 100 mA max. 277 Vac.
29. Actuators are to have manual override on normally closed (NC) models and assembles to valves without the use of tools, linkages or calibration.
30. Actuators are to have a hysteresis synchronous motor.
31. North America Agency Listings: UL873: Underwriters laboratories (Category Temperature Indicating and Regulating Equipment). CUL: UL Listed for use in Canada by Underwriters Laboratory. Canadian Standards C22.2 No. 24.
E. 2"...18" 2-way and 2"...16" 3-way Butterfly Valve Non-Spring Return (NSR) Linear Electronic Valve Actuators with Linkage Butterfly Valve Actuators
[Schneider Electric S70 red w/hand wheel, w/heater actuators]
32. Manufactured, brand labeled or distributed by Schneider Electric.
33. The butterfly valve actuators are to be Non-Spring Return (NSR) two-position and proportional taking $0 \ldots 10$ Vdc or $4 \ldots 20 \mathrm{~mA}$ models. All Actuators are to be NEMA 4, manual override (hand wheel) two auxiliary switches, and built-in heater.
34. Actuator close-offs and Cvs must be appropriate for the valve size in a typical HVAC application.
35. Actuators must be available in 24 Vac and 120 Vac models.
36. Actuators must have [Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.
37. Proportional models must have feedback of $0 . . .10 \mathrm{Vdc}$ or $4 \ldots 20 \mathrm{~mA}$.
38. Actuator operating temperature shall be $-40 \ldots 150^{\circ} \mathrm{F}\left(-40 \ldots 60^{\circ} \mathrm{C}\right)$.
39. Actuator agency listings (North America) UL, CSA and CE.
F. 2"...4" 2-way and 3-way Butterfly Valve Spring Return (SR) Electronic Valve Actuators
[Schneider Electric SmartX M×41-7153 actuators]
40. Manufactured, brand labeled or distributed by Schneider Electric.
41. The butterfly valve actuators are to be Spring Return (SR) two-position and proportional taking 2... 10 Vdc or 4... 20 mA models. All Actuators are to be NEMA 2.
42. Actuator close-offs and Cvs must be appropriate for the valve size in a typical HVAC application.

Guide Specification Text

4. Actuators must be available in 24 Vac models.
5. Actuators shall have two SPDT auxiliary switch models.
6. Actuators must have [Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.
7. Proportional models must have feedback of $2 \ldots 10 \mathrm{Vdc}$ or $4 \ldots 20 \mathrm{~mA}$.
8. Actuator operating temperature shall be $-22 \ldots 140{ }^{\circ} \mathrm{F}\left(-12 \ldots 60^{\circ} \mathrm{C}\right)$
9. Actuators are to have a 5-year warranty.
10. Actuator agency listings (North America) UL, CSA and CE
G. 2"...6" 2-way and 3-way Butterfly Valve Non-Spring Return (NSR) Electronic Valve Actuators
[Schneider Electric SmartX NR-22xx-5xx actuators]
11. Manufactured, brand labeled or distributed by Schneider Electric
12. The butterfly valve actuators are to be Non-Spring Return (NSR) two-position and proportional taking $0 \ldots 10$ Vdc or $4 \ldots 20 \mathrm{~mA}$ models. All Actuators are to be NEMA 2.
13. Actuator close-offs and CVs must be appropriate for the valve size in a typical HVAC application.
14. Actuators must be available in 24 Vac models.
15. Actuators shall have two SPDT auxiliary switch models.
16. Actuators must have Internal wiring isolation for parallel wiring multiple units that eliminates the risk of feedback from one actuator to another.
17. Proportional models must have feedback of $2 \ldots 10 \mathrm{Vdc}$ or $4 \ldots 20 \mathrm{~mA}$.
18. Actuator operating temperature shall be $-22 \ldots 140^{\circ} \mathrm{F}\left(-12 \ldots 60^{\circ} \mathrm{C}\right)$
19. Actuators are to have a 5-year warranty.
20. Actuator agency listings (North America) UL, CSA and CE
H. $1 / 2 " \ldots 2$ " Bronze Body, Linear Electronic Valve Actuators with 67 or 78 lbs. of force. Globe Valve Actuators
[Schneider Electric MG350V]
21. Manufactured, brand labeled and distributed by Schneider Electric.
22. Actuator must have bi-color LED status indication for motion indication, auto calibration and alarm notification.
23. When the actuator is properly mounted must have a minimum of a NEMA 2 (IP53) rating.
24. Actuators are to be non-spring return.
25. Actuators are to be floating (used for two-position) or proportional models.
26. Proportional models will have optional models with a position output signal with field selectable $2 \ldots 10 \mathrm{Vdc}$ and $0 \ldots 10 \mathrm{Vdc}$ input signals and selectable input signal direct or reverse acting.
27. Actuator must have auto calibration which provides precise control by scaling the input signal to match the exact travel of the valve stem
28. Actuators must come in models with Pulse Width Modulated (PWM) with field-selectable 0.59 to 2.93 sec and 0.1 to 25.5 sec input signal ranges with a position output signal
29. Actuators must have manual override with automatic release.
30. Models with position feedback output signal include field selectable 2... 10 Vdc or $0 \ldots 5$ Vdc output signal
31. Removable wiring screw terminal with $1 / 2^{\prime \prime}$ conduit opening.
32. Actuator operating temperature ranges:
a. When controlling fluid up to $266^{\circ} \mathrm{F}\left(130^{\circ} \mathrm{C}\right)=$ ambient air temperature is to be $23 \ldots 131^{\circ} \mathrm{F}$ ($-5 \ldots 55^{\circ} \mathrm{C}$)
b. Fluid up to $281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)=23 \ldots 127^{\circ} \mathrm{F}\left(-5 \ldots 53^{\circ} \mathrm{C}\right)$
c. Fluid up to $340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)=23 \ldots 115^{\circ} \mathrm{F}\left(-5 \ldots 46^{\circ} \mathrm{C}\right)$
d. Fluid up to $400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)=23 \ldots 102^{\circ} \mathrm{F}\left(-5 \ldots 39^{\circ} \mathrm{C}\right)$
33. Actuator agency Listings (North America)
a. cUL-us LISTED mark, per UL 60730-1 and -2-14 and CAN/CSA E60730-1 and -2-14 Automatic Electric Controls
b. NEMA 2
c. NEC class 2 FCC part-15 class B

Guide Specification Text

d. Canadian ICES-003
e. ESA registered
f. Plenum rated per UL 2043

I. $1 / 2$ "...2" Bronze Body, Linear Electronic Valve Actuators with 105 lbs. of force Globe Valve Actuators

[Schneider Electric SmartX Mx51-7103 Series Linear SR Valve Actuator]

1. Manufactured, brand labeled and distributed by Schneider Electric.
2. Actuators must have Two- Position, Floating, and Proportional models.
3. Proportional models will a controller input signal of either a $0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{mAdc}$,
$0 \ldots 3 \mathrm{Vdc}$, or $6 \ldots 9 \mathrm{Vdc}$. Control function direct/reverse action is switch selectable on most models.
4. Actuator force is to be 105 lb . (467 newton) with $1 / 2 \prime$ " (13 mm) nominal linear stroke
5. Power requirements $24 \mathrm{Vac}, 120 \mathrm{Vac}$ or 230 Vac depending on model.
6. Actuator housings rated for up to NEMA 2/ IP54.
7. Actuator is to have overload protection throughout stroke.
8. Actuator Operating temperature $-22 \ldots 140^{\circ} \mathrm{F}\left(-30 \ldots 60^{\circ} \mathrm{C}\right)$.
9. Actuator must automatically set input span to match valve travel.
10. Actuator must have manual override to allow positioning of valve and preload.
11. Actuator is to be spring return.
12. Actuator is to mount directly to valves without separate linkage.
13. Actuator is to have a 5 -year warranty.
14. Actuator agency Listings (North America)
a. UL 873: Underwriters Laboratories (File \#E9429 Category Temperature-Indicating and Regulating Equipment).
b. CUL: UL Listed for use in Canada by Underwriters Laboratories. Canadian Standards C22.2 No. 24-93.
J. $\quad 1 / 2^{\prime \prime} \ldots 2^{\prime \prime}$ Bronze Body (and other valves) Linear Electronic Valve Actuators with 220 of force Globe Valve Actuators
[Schneider Electric SmartX Mx51-720x Series Linear SR Valve Actuator]
15. Manufactured, brand labeled and distributed by Schneider Electric.
16. Actuators must have Two- Position for a SPST controller, Floating for a SPST controller, and Proportional models will a controller input signal of either a $0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{mAdc}$, or $6 \ldots 9$ Vdc. Control function direct/reverse action is jumper selectable
17. Actuator is to be spring return.
18. Actuator will have 220 lb . force (979 newton) with $1 / 2^{\prime \prime}(13 \mathrm{~mm})$ or $1^{\prime \prime}(25 \mathrm{~mm})$ nominal linear stroke
19. Feedback on proportional model with $2 \ldots 10 \mathrm{Vdc}(\max .0 .5 \mathrm{~mA}$) output signal or to operate up to four like additional slave actuators.
20. Actuator operating temperature is $0 \ldots 140^{\circ} \mathrm{F}\left(-18 \ldots 60^{\circ} \mathrm{C}\right)$.
21. Actuator must automatically set input span to match valve travel
22. Actuator is to have a 24 Vac power supply on Two-position and Proportional models and 120 Vac on Two-position models.
23. Actuator is to be spring return.
24. Actuator housings rated for up to NEMA 2/ IP54
25. Actuator must have manual override to allow positioning of valve and preload
26. Actuator is to mount directly to vales without separate linkage.
27. Actuator is to have a 5 -year warranty.
28. Actuator agency Listings (North America)
a. UL 873: Underwriters Laboratories (File \#E9429 Category Temperature-Indicating and Regulating Equipment).
b. CUL: UL Listed for use in Canada by Underwriters Laboratories. Canadian Standards C22.2 No. 24-93.
K. $1 / 2$ "...2" Bronze Body, Spring Return (SR) Linear Electronic Valve Actuators with Linkage Globe Valve Actuators
[Schneider Electric SmartX Actuators]
29. Manufactured, brand labeled or distributed by Schneider Electric.
30. Actuators with $35,60,133$, or 150 lb .-in of force depending on model.
31. Actuator housings rated for up to NEMA 2/ IP54 with a 150 lb .-in. rated a NEMA 4.
32. Actuators are to be spring return.
33. Actuators are to have Two-position, Floating and Proportional models.
34. Actuators must have overload protection throughout rotation.
35. Actuator have an optional built-in auxiliary switch to provide for interfacing or signaling on selected models.
36. Actuators are to have a 5-year warranty.
37. Actuator agency listings (North America)
a. UL-873 Underwriters Laboratories
b. Canadian Standards C22-2 No.24-83, CUL
L. $\quad 1 / 2$ "...2" Bronze Body, Spring Return (SR) Linear Electronic Globe Valve Actuators with Linkage. NonSpring Return (NSR) Linear Valve Actuator with Linkage.
[Schneider Electric Forta M400A-VB, M800A-VB, M900A and M1500x-VB Screw Mounted on Venta VB7000s]
38. Manufactured, brand labeled or distributed by Schneider Electric.
39. Actuators are to be either floating SPDT control or proportional control 0...10, 2... 10 Vdc or $4 \ldots 20$ mA with a 500 -ohm resistor included.
40. Actuators are to be direct/reverse with selectable DIP switches.
41. Actuators are to have $90 \mathrm{lb} .(400 \mathrm{~N}), 180 \mathrm{lb} .(800 \mathrm{~N})$, or $337 \mathrm{lb} .(1500 \mathrm{~N})$ of force on Non-Spring Return (NSR) 157 lb . of force on the Spring Return model. Note: Not every actuator is for every valve.
42. Actuators are to be powered with 24 Vac or 24 Vdc .
43. All Non-Spring Return (NSR) actuators are to be NEMA 2, vertical mount only. Spring Return (SR) actuators are to have NEMA 4 models.
44. Actuators must have manual override to allow positioning of the valve.
45. Actuators must have selectable valve sequencing and flow curves of either equal percentage or linear.
46. Actuators must have feedback.
47. Actuators must have internal torque protection throughout stroke.
48. The operating temperature is to be:
a. $\quad 122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ For chilled water applications
b. $\quad 113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$ ambient at $281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$ fluid temperature
c. $\quad 107^{\circ} \mathrm{F}\left(42{ }^{\circ} \mathrm{C}\right)$ ambient at $300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$ fluid temperature
d. $\quad 100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ ambient at $340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)$ fluid temperature
49. $90^{\circ} \mathrm{F}\left(32{ }^{\circ} \mathrm{C}\right)$ ambient at $366^{\circ} \mathrm{F}\left(186^{\circ} \mathrm{C}\right)$ fluid temperature
50. Actuator agency listings (North America) UL873, cULus, RCM, CE
M. $21 / 2 " \ldots 6^{\prime \prime}$ Cast Iron Flanged Globe Valve Body (and other valves) Non-Spring Return (NSR) Linear Electronic Valve Actuators with Linkage
[Schneider Electric Forta M800A and M1500A Tall U-Bolt Actuators]
51. Manufactured, brand labeled or distributed by Schneider Electric.
52. Actuators are to be either floating SPDT control or proportional control $0 \ldots 10,2 \ldots 10 \mathrm{Vdc}$ or $4 \ldots 20$ mA with a 500 -ohm resistor included.
53. Actuators are to direct/reverse acting with selectable DIP switch.
54. Actuators are to have 180 lb . $(800 \mathrm{~N})$ or 337 lb . $(1500 \mathrm{~N})$ of force.
55. Actuators will need a 24 Vac or Vdc power supply.
56. Actuators are to be rated NEMA 2, vertical mount only.

Guide Specification Text

7. Actuators must have manual override to allow positioning of the valve.
8. Actuators must have selectable valve sequencing and flow curves of either equal percentage to linear. A 2... 10 Vac feedback.
9. Actuators must have [Internal torque protection throughout stroke.
10. The operating temperature is to be:
a. $\quad 122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ For chilled water applications
b. $\quad 113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$ ambient at $281^{\circ} \mathrm{F}\left(138^{\circ} \mathrm{C}\right)$ fluid temperature
c. $\quad 107^{\circ} \mathrm{F}\left(42^{\circ} \mathrm{C}\right)$ ambient at $300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$ fluid temperature
d. $\quad 100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$ ambient at $340^{\circ} \mathrm{F}\left(171^{\circ} \mathrm{C}\right)$ fluid temperature
11. $90^{\circ} \mathrm{F}\left(32^{\circ} \mathrm{C}\right)$ ambient at $366^{\circ} \mathrm{F}\left(186^{\circ} \mathrm{C}\right)$ fluid temperature
12. Actuator agency listings (North America) UL873, cULus, RCM, CE
N. $21 / 2^{\prime \prime} \ldots 6^{\prime \prime}$ Cast Iron Flanged Globe Valve Actuators 220 Ibs. force.
13. Actuators must have Two- Position for a SPST controller, Floating for a SPST controller, and Proportional models will a controller input signal of either a $0 \ldots 10 \mathrm{Vdc}, 2 \ldots 10 \mathrm{Vdc}, 4 \ldots 20 \mathrm{mAdc}$, or $6 \ldots 9$ Vdc. Control function direct/reverse action is jumper selectable.
14. Actuator is to be spring return.
15. Actuator will have 220 lb . force (979 newton) with $1 / 2^{\prime \prime}(13 \mathrm{~mm})$ or $1^{\prime \prime}(25 \mathrm{~mm})$ nominal linear stroke.
16. Feedback on proportional model with $2 \ldots 10 \mathrm{Vdc}(\max .0 .5 \mathrm{~mA}$) output signal or to operate up to four like additional slave actuators.
17. Actuator must automatically set input span to match valve travel.
18. Actuator Operating temperature $0 \ldots 140^{\circ} \mathrm{F}\left(-18 \ldots 60^{\circ} \mathrm{C}\right)$ up to a maximum valve fluid temperature of $300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$.
19. Actuator is to have a 24 Vac power supply on Two-position and Proportional models and 120 Vac on Two-position models.
20. Actuator housings rated for up to NEMA 2/IP54.
21. Actuator must have manual override to allow positioning of valve and preload.
22. Actuator is to mount directly to vales without separate linkage.
23. Actuator agency Listings: UL 873, CUL: UL.
O. $21 / 2^{\prime \prime} . .6$ " Cast Iron Flanged Globe Valve Actuators with Linkage SR.
24. Actuators with 60, 133, or 150 lb .-in of force depending on model.
25. Actuator housings rated for up to NEMA 2/ IP54 with a 150 lb .-in. rated a NEMA 4.
26. Actuators are to be spring return.
27. Actuators are to have Two-position, Floating and Proportional models.
28. Actuators must have overload protection throughout rotation.
29. Actuator have an optional built-in auxiliary switch to provide for interfacing or signaling on selected models.
30. Actuator agency listings: UL-873, C22-2 No.24-83, CUL.

P. Pneumatic Globe Valve Actuators

[Schneider Electric MK Series die-cast aluminum housing actuators]

1. Manufactured, brand labeled or distributed by Schneider Electric.
2. Pneumatic actuators must have field replaceable neoprene diaphragms.
3. All actuators shall be Spring Return (SR) with the spring retracting actuator shaft and raising the valve stem on loss of are pressure.
4. Actuators must have an operating temperature of $-20 \ldots 220^{\circ} \mathrm{F}\left(-29 \ldots 104^{\circ} \mathrm{C}\right)$
5. Actuators shall be models with 6 sq. in. 11, 50 and 100 sq. in effective area for the psi to push against.
6. Actuators may not "spark" under normal conditions.
7. Actuators must except an optional positive pilot positioning relay.
8. Actuators will have a maximum air pressure of 30 psig.
9. Actuators must have models with spring ranges for typical HVAC applications.

Q. Pneumatic Damper Actuators

[Schneider Electric MK-0000 die-cast aluminum housing actuators]

1. Manufactured, brand labeled or distributed by Schneider Electric.
2. Pneumatic actuators must have field replaceable neoprene diaphragms.
3. All actuators shall be Spring Return (SR) with the spring retracting actuator shaft on loss of are pressure.
4. Actuators must have an operating temperature of $-20 \ldots 160^{\circ} \mathrm{F}\left(-29 \ldots 71^{\circ} \mathrm{C}\right)$
5. Actuators shall be models with 8 sq. in. 11, 20 and 40 sq. in. (dual mounted) effective area for the psi to push against.
6. Actuators may not "spark" under normal conditions.
7. Actuators must except an optional positive pilot positioning relay. Relay is to be standard on 20 sq. in. models.
8. Actuators will have a maximum air pressure of 30 psig.
9. Actuators must have models with spring ranges for typical HVAC applications.

2.16 CONTROL VALVES

A. Zone Valves, Two-Position, Control Valves

[Schneider Electric Erie zone valves]

1. Manufactured, brand labeled or distributed by Schneider Electric
2. Valve application are for hot and chilled water models, up to 50% glycol. Steam models up to 15 psi
3. Valve seat leakage is to ANSI class IV (0.01%) with pressure at inlet (B-port/A-port, if 3-way).
4. Valves are to be: Body 300 psi rated forged brass, Stem-nickel plated, Seat-brass, Paddle-Buna N or highly saturated nitrile.
5. Valves are to be 2-way or 3-way with connections options of NPT (threaded female), Sweat (SW), Inverted flare (IFL), Society Automotive Engineers male (SAE) Rp Metric threaded female, depending on models, with end switch option on general temperature models.
6. Actuators are to be Spring Return (SR) normally open (NO) and normally closed (NC) models. Actuators are to have "High Close-off" models.
7. Valve line sizes are $3 / 4 ", 1 / 2^{\prime \prime}, 3 / 4^{\prime \prime}, 1^{\prime \prime}$, and $1 \frac{1}{4}$ " depending on model.
8. Valve CVs are to from 1 to 8 depending on model.
9. Actuators are to be UL listed

Bronze $1 / 2$ "...2" Globe Control Valves

[Schneider Electric Venta VB-7000 valves]

1. Control Valves: Factory fabricated, with body material, and pressure class based on maximum pressure and temperature rating of piping system with a body rating of not less than 400 psig at $150{ }^{\circ} \mathrm{F}, 321$ psig at $281^{\circ} \mathrm{F}$ per ANSI B16.15.
2. Valve Manufacturer: Must have at least 25 years of valve manufacturing and must meet the provisions of Section 1605 of the American Recovery and Reinvestment Act Buy American Requirements. Manufacturer shall water test all valves prior to shipment.
3. Valves two way NPS 2" and Smaller: Operator, stem and plug assembly, and spring-loaded PTFE/ EPDM valve stem packing cartridge must be removable for future replacement to restore the valves back to their original condition. Material grade properties must meet the fluid temperature and pressure requirements:
a. Standard duty bronze body, 316 stainless steel vertical stem, brass plug, soft seal, and bronze seat, renewable packing cartridge, and screwed/sweat/flared ends. Valves shall have allowable media temperature of $20^{\circ} \mathrm{F} \ldots 281^{\circ} \mathrm{F}$ to assure reliability with dual temperature applications.
b. Heavy duty bronze body, 316 stainless steel vertical stem, 316 stainless steel plug, soft seal, and 316 stainless steel seat, renewable packing cartridge, and screwed ends. Valves shall have allowable media temperature of $20^{\circ} \mathrm{F} \ldots 340^{\circ} \mathrm{F}$ to assure to assure reliability with dual temperature applications.
c. High temperature bronze body, 316 stainless steel vertical stem, 316 stainless steel plug, and 316 stainless steel seat, renewable packing cartridge, and screwed ends. Valves shall have allowable media temperature of $20^{\circ} \mathrm{F} \ldots 400^{\circ} \mathrm{F}$.
4. 2-way fluid system globe valves shall have the following characteristics:
a. Rangeability: Greater than 100:1 for all valves with flow coefficients of 0.4 and higher to provide stable control under light load conditions.
b. Maximum Allowable Seat Leakage: Standard and heavy duty valves must be designed to meet ANSI Class V (0.0005 ml per minute per "of orifice diameter per psi differential) up to 35 psi close off differential pressure and ANSI Class IV seat leakage (maximum 0.01% of full open valve capacity) above 35 psi with appropriate actuator. High temperature valves must meet ANSI Class III seat leakage (maximum 0.1% of full open valve capacity).
c. The valve must be able to operate with a full-open operating differential of no less than 87 psi.
d. Flow Characteristics: Modified equal percentage characteristics for standard duty water applications and modified linear for heavy duty and high temperature steam applications with gradual opening for light loads.
e. Sizing:
a. Two Position Water: Line size or size using a differential pressure of 1 psi.
b. Modulating Water: 5 PSI or twice the load pressure drop.
c. Pressure drop across steam valve at a maximum flow of 80 percent of inlet pressure up to 15 psig and 42% of absolute (gage pressure +14.7) inlet pressure above 15 psig inlet.
d. $\quad 100 \mathrm{psi}$ saturated steam maximum inlet pressure for heavy duty bronze body globe valves $1 / 2^{\prime \prime} . . .2$ ".
e. 150 psi saturated steam maximum inlet pressure for high temperature bronze body globe valves $1 / 2^{\prime \prime} \ldots 2^{\prime \prime}$.
f. $\quad 35$ psi saturated steam maximum inlet pressure for standard duty bronze body globe valves $1 / 2$ "...2".
5. Valves 3-Way mixing (two inlets and one outlet) NPS 2" and Smaller:
a. Operator, stem and plug assembly, and spring-loaded PTFE/EPDM valve stem packing cartridge must be removable for future replacement to restore the valves back to their original condition. Material grade properties must meet the fluid temperature and pressure requirements:
a. Standard duty bronze body, 316 stainless steel vertical stem, brass plug, and bronze seat, renewable packing cartridge, and screwed or sweat ends. Valves shall have allowable media temperature of $20^{\circ} \mathrm{F} \ldots 281^{\circ} \mathrm{F}$ to assure reliability with dual temperature applications.
b. Heavy duty bronze body, 316 stainless steel vertical stem, 316 stainless steel plug, and 316 stainless steel seat, renewable disc and packing cartridge, and screwed
ends. Valves shall have allowable media temperature of $20^{\circ} \mathrm{F} \ldots 340^{\circ} \mathrm{F}$ to assure reliability with dual temperature applications.
6. 3-Way mixing hydronic system globe valves shall have the following characteristics:
a. Rangeability: Greater than 100:1 for all valves to provide stable
b. Maximum Allowable Seat Leakage: A port must be designed to meet ANSI Class V (0.0005 ml per minute per "of orifice diameter per psi differential) up to 35 psi close off differential pressure and ANSI IV seat leakage (maximum 0.01% of full open valve capacity) above 35 psi with appropriate actuator. B port must meet ANSI Class III seat leakage (maximum 0.1\% of full open valve capacity).
c. The valve must be able to operate with a full-open operating differential of 87 psi .
d. Flow Characteristics: Modified linear characteristics with gradual opening for light loads.
e. Sizing: Modulating Water: Minimum 5 psi or at least equal to the load pressure drop.
7. Valves 3-Way diverting (one inlet and two outlets) NPS 2" and Smaller:
a. Operator, stem and plug assembly, and spring-loaded PTFE/EPDM valve stem packing cartridge must be removable for future replacement to restore the valves back to their original condition. Valves must be designed specifically for diverting service, and mixing valves designed for mixing service must not be used for diverting applications. Material grade properties must meet the fluid temperature and pressure requirements: Standard duty bronze body, 316 stainless steel vertical stem, brass plug, and bronze seat, renewable disc and packing cartridge, and screwed ends. Valves shall have allowable media temperature of $20^{\circ} \mathrm{F} \ldots 281^{\circ} \mathrm{F}$ to assure reliability with dual temperature applications.
8. 3-Way diverting hydronic system globe valves shall have the following characteristics:
a. Rangeability: Greater than 100:1 for all valves to provide stable control under light load conditions.
b. Maximum Allowable Seat Leakage: ANSI Class III seat leakage (maximum 0.1% of full open valve capacity).
c. Maximum Allowable Pressure Differential: 35 psi in.an open position.
d. Flow Characteristics: Modified linear characteristics with gradual opening for light loads.
e. Sizing:
a. Modulating Water: Minimum 5 psi or at least equal to the load pressure drop.
9. Required Certifications:
a. Pressure Equipment Directive (PED 97/23/EC), RoHS (Restriction of Hazardous Substances) and REACH (Regulation, Evaluation, Authorization, and Restriction of Chemicals), Canadian Registration Number.
10. Valve and Operator:
a. To assure maximum performance and operation of the valve assembly both the valve and the actuator must be tested and approved by the valve manufacturer to assure compatibility of all components and performance to the specifications.

2"...6" Cast Iron Flanged Valves

[Schneider Electric VB-8000 and VB-9000 valves]

1. Bodies
a. Shall be American Factory fabricated with ASTM A 126 Class B cast iron body material with the pressure class within the maximum pressure and temperature rating of the piping system. (125 body rating with not less than 200 psig at $150^{\circ} \mathrm{F}$, decreasing to 169 psig at 281 F per ANSA B16.1)
2. Manufacturer
a. Shall have at least 25 years of valve manufacturing and meet the provisions of Section 1605 of the American Recovery and Reinvestment Act, buy American, requirements. All valves shall be water tested by manufacturer prior to shipment.
3. Serviceability
a. 2-Way valve operators, stem and plug assemblies and spring-loaded PTFE/EPDM valve stem packing cartridges must be removable for future replacement to restore the valves back to their original condition.
4. Construction
a. Material grades must meet the fluid temperature and pressure requirement temperatures of $20^{\circ} \mathrm{F} \ldots 281^{\circ} \mathrm{F}$ to assure reliability throughout all application temperature ranges.
5. Packings
a. Shall be cartridges suitable for replacement as units withstanding the full operating temperature ranges, including daily and seasonal fluctuations of water, $60 \% \mathrm{glycol}$ and steam fluids.
6. Characteristics
a. Rangeability: Two way,100:1 and greater for stable control under light load.
b. Shutoff, 2-Way: Leakage allowed: ANSI Class IV (0.01\% of max flow)
c. 3-Way: Leakage allowed: ANSI Class III (0.1% of max flow)
d. Flow curves: 2-Way modified equal percentage characteristic.
e. Mixing and Diverting: Linear, modified with gradual opening for light loads.
7. Piping
a. Diverting valves, with the common port at the bottom can be used for mixing.
b. Mixing valves with the common port at the end must not be used for diverting applications.
8. Sizing
a. Two Position Water: Line size or size using a differential pressure of 1 psi.
b. Modulating Water: 5 PSI or twice the load pressure drop
c. Steam, 2-Way: maximum pressure drop across the valve at a maximum flow of 80 percent of inlet pressure up to 15 psig. Above 15 psig inlet, 42% of absolute (gage pressure +14.7) inlet pressure.
9. Certifications for All Models
a. Pressure Equipment Directive (PED 97/23/EC), RoHS (Restriction of Hazardous Substances) and REACH (Regulation, Evaluation, Authorization, and Restriction of Chemicals

D. Steam Control Valves

1. $1 / 2$ "...2" Steam Service Designed Globe Valves
a. Body material, and pressure class based on maximum pressure and temperature rating of piping system with a body rating of not less than 400 psig at $150^{\circ} \mathrm{F}, 321 \mathrm{psig}$ at $281^{\circ} \mathrm{F}$ per ANSI B16.15.
b. High temperature spring-loaded PTFE/EPDM valve stem packing cartridge must be removable for future replacement to restore the valves back to their original condition. Material grade properties must meet the fluid temperature and pressure requirements:
a. Standard duty bronze body, 316 stainless steel vertical stem, brass plug, soft seal, and bronze seat, renewable packing cartridge, and screwed/sweat/flared ends. Valves shall have allowable media temperature of $20^{\circ} \mathrm{F} \ldots 281^{\circ} \mathrm{F}$ to assure reliability with dual temperature applications.
b. Heavy duty bronze body, 316 stainless steel vertical stem, 316 stainless steel plug, soft seal, and 316 stainless steel seat, renewable packing cartridge, and screwed ends. Valves shall have allowable media temperature of $20^{\circ} \mathrm{F} \ldots 340^{\circ} \mathrm{F}$ to assure to assure reliability with dual temperature applications.
c. High temperature bronze body, 316 stainless steel vertical stem, 316 stainless steel plug, and 316 stainless steel seat, renewable packing cartridge, and screwed ends. Valves shall have allowable media temperature of $20^{\circ} \mathrm{F}$... $400^{\circ} \mathrm{F}$.
c. Two-way fluid system globe valves shall have the following characteristics:
a. Rangeability: Greater than 100:1 for all valves with flow coefficients of 0.4 and higher to provide stable control under light load conditions.
b. Maximum Allowable Seat Leakage: Standard and heavy duty valves must be designed to meet ANSI Class V (0.0005 ml per minute per "of orifice diameter per psi differential) up to 35 psi close off differential pressure and ANSI Class IV seat leakage (maximum 0.01% of full open valve capacity) above 35 psi with appropriate actuator. High temperature valves must meet ANSI Class III seat leakage (maximum 0.1\% of full open valve capacity).
c. The valve must be able to operate with a full-open operating differential of no less than 87 psi.
d. Flow Characteristics: Modified equal percentage characteristics for standard duty water applications and modified linear for heavy duty and high temperature steam applications with gradual opening for light loads.
e. Sizing:
a. Pressure drop across steam valve at a maximum flow of 80 percent of inlet pressure up to 15 psig and 42% of absolute (gage pressure +14.7) inlet pres-
sure above 15 psig inlet.
b. $\quad 100 \mathrm{psi}$ saturated steam maximum inlet pressure for heavy duty bronze body globe valves $1 / 2^{\prime \prime} \ldots 2^{\prime \prime}$.
c. $\quad 150 \mathrm{psi}$ saturated steam maximum inlet pressure for high temperature bronze body globe valves $1 / 2^{\prime \prime} \ldots 2^{\prime \prime}$.
d. 35 psi saturated steam maximum inlet pressure for standard duty bronze body globe valves $1 / 2^{\prime \prime} \ldots 2^{\prime \prime}$.
f. Certifications for All Models: Pressure Equipment Directive (PED 97/23/EC), RoHS (Restriction of Hazardous Substances) and REACH (Regulation, Evaluation, Authorization, and Restriction of Chemicals
2. $21 / 2^{\prime \prime} \ldots 6^{\prime \prime}$ Steam Service Designed Globe Valves
a. Bodies: Shall be American Factory fabricated with ASTM A 126 Class B cast iron body material with the pressure class within the maximum pressure and temperature rating of the piping system. (125 body rating with not less than 200 psig at $150^{\circ} \mathrm{F}$, decreasing to 169 psig at 281F per ANSA B16.1)
b. Serviceability: 2-Way valve operators, stem and plug assemblies and spring-loaded PTFE/ EPDM valve stem packing cartridges must be removable for future replacement to restore the valves back to their original condition.
c. Construction: Material grades must meet the fluid temperature and pressure requirement temperatures of $20^{\circ} \mathrm{F} \ldots 281^{\circ} \mathrm{F}$ to assure reliability throughout all application temperature ranges.
d. Packings: Shall be cartridges suitable for replacement as units withstanding the full operating temperature ranges, including daily and seasonal fluctuations of water, 60\% glycol and steam fluids.
e. Characteristics
a. Rangeability: Two way,100:1 and greater for stable control under light load.
b. Shutoff, 2-Way: Leakage allowed: ANSI Class IV (0.01% of max flow)
c. Flow curves: 2-Way modified equal percentage characteristic.
d. Sizing
a. Steam, 2-Way: maximum pressure drop across the valve at a maximum flow of 80 percent of inlet pressure up to 15 psig. Above 15 psig inlet, 42% of absolute (gage pressure + 14.7) inlet pressure.
b. Certifications for All Models: Pressure Equipment Directive (PED 97/23/EC), RoHS (Restriction of Hazardous Substances) and REACH (Regulation, Evaluation, Authorization, and Restriction of Chemicals
E. $1 / 2 " . . .3 / 4$ " Ball Valve
[Schneider Electric VBB/VBS Ball Valves]
3. Manufactured, brand labeled or distributed by Schneider Electric.
4. $1 / 2^{\prime \prime}$ and $3 / 4$ " Ball Valves: Forged brass body rated at no less than 600 psi, chrome plated brass ball with blowout proof stem or optional stainless steel ball with blowout proof stem,
5. Valves are to be in 2-way and 3-way configurations.
6. Connection: Female NPT end fittings, Teflon® PTFE seat, characterizing disc glass-filled PEEK providing equal percentage flow curve on 2-way valve.
7. Operating Temperature $20 \ldots 250^{\circ} \mathrm{F}$ chilled or hot water with up to 60% glycol solution.
8. 2-way and Bypass port should be ANSI Class IV (0.01% of CV) seat leakage.
9. Rangeability must be at least 300:1.
10. Tool-less actuator connection.
11. System Static Pressure Limit should be 600 psig (4137 Pa)
12. The manufacturer shall warrant all components for a period of 2 years from the date of production.

Guide Specification Text

F. 2-way ($1 / 2$ "...3") and 3-way ($1 / 2^{\prime \prime} \ldots 2$ ") Ball Valves

[Schneider Electric VB-2000 series]

1. Manufactured, brand labeled or distributed by Schneider Electric.
2. Valves must be for control of hot or chilled water, or solutions of up to 50% glycol.
3. Ball valves must have close-offs of $40 \ldots 130$ psi depending on size.
4. Valves will provide Cvs from 0.33... 266 depending on size.
5. Valve characterizing insert, is to made of glass-filled Noryl ${ }^{\text {TM }}$ and provide equal percentage flow.
6. Valve body is to made of forged brass ASTM B283-06 and rated for static pressure of 360 psi at fluid temperatures of $20 \ldots 250^{\circ} \mathrm{F}\left(-7 \ldots 121^{\circ} \mathrm{C}\right)$.
7. All valves are to have balls made of nickel/chromium plated brass with 2-way valves having stainless steel balls as an option. All valve stems are to be stainless steel with reinforce Teflon® EPDM O-ring seals.
8. 2-way valves are to be ANSI Class IV (0.01% of Cv) shutoff. 3-way valves are to be ANSI Class IV (0.01% of Cv piped coil-side outlet to the port A only.
9. Fluid (water) temperature are a minimum $20^{\circ} \mathrm{F}\left(-7^{\circ} \mathrm{C}\right)$ and a maximum of $250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$.
10. Valves will have a two warranty.
G. Pressure Independent Balancing Control Valves $1 / 2^{\prime \prime} \ldots 10^{\prime \prime}$
[Schneider Electric SmartX PIBCV]
When selecting pressure independent valves the specifier should also revise section 232113 to NOT include balancing valves and also modify section 230593 to NOT require the individual balancing of each coil/valve combination.
11. Manufactured, brand labeled or distributed by Schneider Electric.
12. NPS 2 and Smaller: PN 16, stainless steel components.
13. NPS $21 / 2$ through 10 : Class 125 cast iron body per ASME B16.1-2010, Material class B per ASTM A 126-04 (2014), stainless steel components.
14. Accuracy NPS $3 / 4$ " and Smaller: The control valves shall accurately control the flow from $0 \ldots 100 \%$ rated flow with a differential pressure range of $2.32 \ldots 58$ psi for low and standard flow units, 5...58 psi for high flow units within 5% of set flow value.
15. Accuracy NPS 1 through 1114: The control valves shall accurately control the flow from $0 . . .100 \%$ rated flow with a differential pressure range of $2.9 \ldots 58 \mathrm{psi}$ for standard flow units, $5 \ldots 58$ psi for high flow units within 5% of set flow value.
16. Accuracy NPS $1 \frac{1}{2}$ through 4: The control valves shall accurately control the flow from $0 \ldots 100 \%$ rated flow with a differential pressure range of $4.35 \ldots 58$ psi for standard flow units, 8.7 psi to 58 psi for high flow units within 5% of set flow value.
17. Accuracy NPS 5 through 10: The control valves shall accurately control the flow from 0...100\% rated flow with a differential pressure range of $5.8 \ldots 58 \mathrm{psi}$ for standard flow units, 8.7...58 psi for high flow units within 5% of set flow value.
18. Flow Characteristics: Linear Control, selectable to equal percentage at the proportional valve actuator.
19. Field adjustable flow by means of a percentage of rated valve flow.
20. Position feedback output signal integrated into all proportional actuators.
21. 100% authority with modulating below 1% regardless of flow settings.
22. No cartridges requiring replacement or maintenance.
23. Close off ratings shall be 232 psi for all valve sizes.

H. Butterfly Valves

1. Manufactured, brand labeled or distributed by Schneider Electric.
2. Valve body are to be polyester coated iron ASTM A126 lug mating with ANSI class 125/150 flanges.
3. Disc Type: Ductile iron nylon 11 coated.
4. Valve Stem:
a. $2 \ldots 8$ " 416 stainless steel double D stem.
b. 10...12" 316 stainless steel double D stem.
c. 14 " and larger: stainless steel round shaft woodruff key slot.
5. Valve Seat:
a. EPDM tongue and groove seat and molded O-ring flange seat
6. Flow Characteristics: Modified equal percentage.
7. Close-Off Pressure Rating: Bubble-tight shutoff (no leakage).
8. Valve Fluid Temperature Rating: $-40 \ldots 250^{\circ} \mathrm{F}\left(-40 \ldots 121^{\circ} \mathrm{C}\right)$
9. Valve will have two (2) inch extended neck (because of heat).
10. Valve must accept pneumatic or electric/electronic actuators
11. Valves must have a minimum of a two (2) year warranty.
I. High Performance Butterfly Valves
12. Manufactured, brand labeled or distributed by Schneider Electric.
13. Valve body are to be carbon steel with ANSI class 150 flanges
14. Disc Type: 316 stainless steel
a. Valve Stem: 17-4PH stainless steel
b. One-piece design
c. Blow out proof design
15. Valve Seat:
a. Resilient energizer totally encapsulated by the PTFE seat
b. Seat assembly locked in the body recess by full-faced seat retainer
c. Self adjusting for temperature changes and wear
16. Flow Characteristics: Modified equal percentage
17. Close-Off Pressure Rating: Bubble-tight shutoff (no leakage) at rated maximum differential pressure
18. Valve Fluid Temperature Rating:
a. $-40 \ldots 500^{\circ} \mathrm{F}\left(-40 \ldots 250^{\circ} \mathrm{C}\right)$
b. On/Off steam application max. 150 psi pressure
c. Proportional steam application max. 50 psi pressure
19. Valve will have extended neck (because of heat)
20. Valve must accept pneumatic or electric/electronic actuators
21. Valve must have a minimum two (2) year warranty

Life Is Un \mid Schneider S Electric

 owners. Information contained within this document is subject to change without notice.

[^0]: The Schneider Electric brand and any trademarks of Schneider Electric SE and its subsidiaries referred to in this guide are the property of Schneider Electric SE or its subsidiaries. All other brands may be trademarks of their respective owners. This guide and its content are protected under applicable copyright laws and furnished for informational use only. No part of this guide may be reproduced or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), for any purpose, without the prior written permission of Schneider Electric. Schneider Electric does not grant any right or license for commercial use of the guide or its content, except for a non-exclusive and personal license to consult it on an "as is" basis. Schneider Electric products and equipment should be installed, operated, serviced, and maintained only by qualified personnel. As standards, specifications, and designs change from time to time, information contained in this guide may be subject to change without notice. To the extent permitted by applicable law, no responsibility or liability is assumed by Schneider Electric and its subsidiaries for any errors or omissions in the informational content of this material or consequences arising out of or resulting from the use of the information contained herein.

[^1]: Ordering VB-7000 Series Valves
 Ordering VB-7000 Globe Valve Assemblies - SmartX
 Ordering VB-7000 Globe Valve Assemblies (Other Actuators)
 Ordering VB-8000, VB-9000 Valves
 Ordering VB-8000, VB-9000 Valve Assemblies
 Ordering VBB/VBS Ball Valve Assemblies
 Ordering SmartX 5xx and 8xx Ball Valve Assemblies
 SmartX 5xx Actuators
 SmartX 8xx Actuators
 Ordering Modulating Zone Valve Assemblies
 Ordering 2-Position Zone Valve Assemblies
 Ordering Butterfly Valve Assemblies
 PIBCV Valve Assembly Part Number System

[^2]: a - For Honeywell Floor Mount Mod. Motor.
 b - For shafts $3 / 4$ " (19 mm) round and $5 / 8^{\prime \prime}(15.9 \mathrm{~mm})$ square.
 c - For shafts $3 / 8^{\prime \prime}$...1/2" $(10 \ldots 13 \mathrm{~mm})$ round and square.
 d - Only used on Mx41-707x-xxx, Mx41-715x-xxx.

[^3]: 1- The Mx51-720x, Mx61-720x actuator are higher force versions of the Mx51-710x for large valves and high close-off applications.
 2- Forta actuators have universal inputs for proportional and floating operation.

[^4]: a - AV-601 is not available as an assembly and has to be ordered separately.
 b - Add -S2 for auxillary switch. Only available as a field assembly.
 c - Add - 500 for auxillary switch. Only available as a field assembly.

[^5]: a - To determine a specific part number, see Pg. 50, Ordering VB-7000 Globe Valve Assemblies for the relevant part series.
 $b-k v s=m^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{Cv}=\mathrm{kvs} \times 1.156$
 c - All $V x-72 x x$ leakage ratings are ANSI V to 35psi and ANSI IV above 35psi; with the exception of $\mathrm{Vx}-7273$ and $\mathrm{Vx}-7283$ (ANSI III).
 d - For seat leakage ratings, refer to Seat Leakage Classes.

[^6]: b - To determine a specific part number, see Pg. 50, Ordering VB-7000 Globe Valve Assemblies for the relevant part series.
 $\mathrm{c}-\mathrm{kvs}=\mathrm{m}^{3} / \mathrm{h}(\Delta \mathrm{P}=100 \mathrm{kPa}) \quad \mathrm{kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{Cv}=\mathrm{kvs} \times 1.156$
 $c-k v s=m^{3} / h(\Delta P=100 \mathrm{kPa}) \quad \mathrm{kvs}=\mathrm{CV} / 1.156 \quad C V=\mathrm{kvs} \times 1.156$
 d - Mixing Valves A port seat leakage ANSI IV, B port seat leakage ANSI III, Diverting Valves seat leakage is ANSI III.
 e - For field assembly, factory actuator, linkage and valve assembly may be offered.

[^7]: NOTE: Threaded bodies are not available in size $2 \frac{1}{2 \prime}$ " and larger.

[^8]: a - See Pg. 111, VB-8000, VB-9000 Assembly Selection Procedure for the relevant part series to determine a specific part number.
 $\mathrm{b}-\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{gpm}}{\Delta \mathrm{P}}$ (where $\Delta \mathrm{P}$ is measured in psi) $\quad \mathrm{kvs}=\mathrm{Cv} / 1.156 \quad \mathrm{~K}_{\mathrm{vs}}=\frac{\mathrm{m}^{3} / \mathrm{h}}{\Delta \mathrm{P}} \quad$ (where $\Delta \mathrm{P}$ is measured in bar; $1 \mathrm{bar}=100 \mathrm{kPa}$).
 c - Maximum allowable differential across the valve in any open position. Less than 20 psi recommended for quieter service. Consult close-off pressure ratings.
 d-Dual actuators are not available as factory assemblies.

[^9]: a - Nominal (no load) spring ranges are based on maximum 1" (25.4 mm) or 2" (50.8 mm) stroke.

[^10]: a - Non-spring return 3-way ball valve assemblies are shipped open A to $A B$ and a control voltage increase will close A to $A B$ and open B to $A B$
 b- Spring return, 3-way mixing valves are normally closed, A to $A B$ and a control voltage increase will close A to $A B$ and open B to $A B$
 c - To find the corresponding flow coefficients for these port codes, refer to " 3 -Way Ball Valve Assemblies - Sizes, Port Codes, and Cvs" on page 145.
 d - To determine a specific part number, identify the actuator's control signal type ("A," "F," or "S"), actuator code, and P code. Refer to "Ball Valve Assemblies
 Using SmartX 8xx Actuators" on page 144.

[^11]: a - To find the corresponding flow coefficients for these port codes, refer to "2-Way Ball Valve Assemblies with Sizes, Port Codes, and Cvs." on page 145.

[^12]: a - To find the corresponding flow coefficients for these port codes, refer to "2-Way Ball Valve Assemblies with Sizes, Port Codes, and Cvs." on page 145.

[^13]: a. The letter indicates the main valve and where the actuator is mounted

 * For spring return models this column also indicates position on loss of power.

 Three-way valves are configurable during the order process. When placing an order manually through customer care please note the Configuration Number above. When ordering online through iPortal, please select the proper configuration from the drop-downs on the Cart Page. Refer to flow diagram above.

[^14]: a. See Table 2 to verify the correct actuator application for the valve selected.
 b. $\quad \mathrm{D}=$ Dual actuators
 c. E1x through E5x available as 24 Vac powered: change actuator code E to "F" and 120 to 24 , e.g. E10 to F10, then "S70-24-0061-H"

[^15]: a. 120 Vac powered models shown, for 24 Vac models change the letter E to F. Example VAFS-6200-F10-L-11 would be 24 Vac powered
 b. E60/62 E70/72 E80/82 only available in 120 Vac.

[^16]: ${ }^{\text {a }}$ For optional two SPDT auxiliary switch models the letter " S " must be added to the model prefix field. e.g. VxxS
 ${ }^{\mathrm{b}} \mathrm{D}=$ Dual mounting.
 ${ }^{\text {c }}$ Dual mounted application. One Mx41-7153 and one Mx41-7153-502 are supplied.

[^17]: ${ }^{\text {a }}$ For optional two SPDT auxiliary switch models the letter "S" must be added to the model prefix field. e.g. VxxS
 ${ }^{\mathrm{b}} \mathrm{D}=$ Dual mounting.
 ${ }^{\text {c }}$ Dual mounted application. One NR-22xx-5x2 and one NR-22xx-5xx are supplied.

[^18]: * For 24 Vac powered change two-position or proportional "E" code to "F," e.g. VAFS-6200-F10-L-11"

[^19]: ($Q_{\text {high }}$ setting)

[^20]: * Total height of the assembly increases with the use of the Adapter model.

[^21]: a May require close nipple conduit extensions for mounting $x-6680$.

