
Technical Document

Updated: March 24, 2015

NiagaraAX-3.5 Z-Wave Driver Guide

NiagaraAX Z-Wave Driver Guide

Confidentiality Notice
The information contained in this document is confidential information of Tridium, Inc., a Delaware corporation (“Tridium”). Such
information, and the software described herein, is furnished under a license agreement and may be used only in accordance with
that agreement.
The information contained in this document is provided solely for use by Tridium employees, licensees, and system owners; and,
except as permitted under the below copyright notice, is not to be released to, or reproduced for, anyone else.
While every effort has been made to assure the accuracy of this document, Tridium is not responsible for damages of any kind,
including without limitation consequential damages, arising from the application of the information contained herein. Information
and specifications published here are current as of the date of this publication and are subject to change without notice. The latest
product specifications can be found by contacting our corporate headquarters, Richmond, Virginia.

Trademark Notice
Z-Wave is a registered trademark of Zensys Corporation. BACnet and ASHRAE are registered trademarks of American Society of
Heating, Refrigerating and Air-Conditioning Engineers. Microsoft and Windows are registered trademarks, and Windows 2000,
Windows XP Professional, Windows 7, and Internet Explorer are trademarks of Microsoft Corporation. Java and other Java-based
names are trademarks of Sun Microsystems Inc. and refer to Sun's family of Java-branded technologies. Mozilla and Firefox are
trademarks of the Mozilla Foundation. Echelon, LON, LonMark, LonTalk, and LonWorks are registered trademarks of Echelon
Corporation. Tridium, JACE, Niagara Framework, NiagaraAX Framework, and Sedona Framework are registered trademarks, and
Workbench, WorkPlaceAX, and AXSupervisor, are trademarks of Tridium Inc. All other product names and services mentioned in
this publication that is known to be trademarks, registered trademarks, or service marks are the property of their respective owners.

Copyright and Patent Notice
This document may be copied by parties who are authorized to distribute Tridium products in connection with distribution of those
products, subject to the contracts that authorize such distribution. It may not otherwise, in whole or in part, be copied, photocopied,
reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from
Tridium, Inc.
Copyright © 2015 Tridium, Inc.
Use of these products in combination with non-Tridium products in a wireless mesh network, or to access, monitor or control
devices in a wireless mesh network via the Internet or another external wide-area network, may require a separate license from
SIPCO, LLC. For more information contact SIPCO, LLC or IPCO, LLC at 8215 Roswell Rd., building 900, Suite 950, Atlanta, GA
303350, or at www.sipocollc.com or www.intusiq.com.
Covered by one or more claims of patents: http://sipcollc.com/patent-list/ and http://intusiq.com/patent-list/.
All rights reserved. The product(s) described herein may be covered by one or more U.S or foreign patents of Tridium.

CONTENTS

Preface . v
Z-Wave terms . ii–v

Document Change Log . ii–vi

Compatibility, Software Installation, and Jobsite Requirements 1–1
Compatibility . 1–1

NiagaraAX platform compatibility . 1–1
Z-Wave compatibility . 1–1
Z-Wave reference documents . 1–1

Z-Wave command classes supported . 1–2

License requirements . 1–3

Software installation . 1–3

Z-Wave jobsite requirements . 1–3
About a Z-Wave portable primary controller . 1–3
About JACE Z-Wave operation modes . 1–4
Secondary Static Controller . 1–4
Static Update Controller (SUC) . 1–4
SUC ID Server (SIS) . 1–4
Battery-powered (non-listening) device considerations . 1–5
Frequently Listening Routing Slave (FLiRS) device considerations . 1–5

Z-Wave Driver Quick Start . 2–1
Add and configure the ZWaveNetwork . 2–1

Add the ZWaveNetwork . 2–1
Configure ZWaveNetwork communication parameters . 2–1

Install the JACE on the Z-Wave network . 2–2

Review ZWave proxy points and device child components . 2–3

NiagaraAX Z-Wave Concepts . 3–5
About Z-Wave to NiagaraAX Architecture . 3–6

Modeling Z-Wave in the NiagaraAX station . 3–6
Palette for ZWave driver . 3–6

About the ZWaveNetwork . 3–7
ZWave-specific network slots . 3–7
Comm Plug In . 3–8
Other interface related properties . 3–9
ZWave Scenes network extension . 3–10
Common ZWaveNetwork slots .3–10
ZWaveNetwork status notes . 3–10
ZWaveNetwork monitor notes . 3–10
ZWaveNetwork tuning policy notes . 3–10
ZWaveNetwork poll scheduler notes . 3–10
ZWaveNetwork message handling properties . 3–11
NiagaraAX-3.5

Z-Wave Driver Guide
i

March 24, 2015
ZWaveNetwork actions .3–11

ZWave Device Manager . 3–12
Buttons (network management functions) .3–13
Discover . 3–13
ScanForDevices . 3–13
ReplicateReceive . 3–13
TransferPrimary . 3–13
OptimizeNetwork . 3–13

About the ZWaveDevice . 3–14
Types of ZWave device components .3–14
ZWaveThermostat . 3–14
ZWaveDevice . 3–14
ZWaveDevice common properties .3–15
Node Info . 3–16
Points . 3–17
ZWaveDevice child components .3–18
Child component types . 3–18
ZWaveDevice actions .3–19

ZWave Point Manager . 3–20
Editing ZWave proxy points .3–21

About ZWave proxy points . 3–21
ZWaveProxyExt properties .3–21
ZWave proxy point actions .3–22
ZWave proxy points by default name .3–23
Alarm Sensor . 3–24
Alarm Silence . 3–24
Battery . 3–24
Battery Sensor . 3–24
Binary Switch . 3–24
Binary Toggle . 3–24
Energy Production . 3–24
Hail . 3–25
Lock . 3–25
Meter . 3–25
Move To Position Window Covering . 3–25
Multilevel Sensor . 3–25
Multilevel Switch . 3–25
Pulse Meter . 3–25
Thermostat Fan Mode . 3–25
Thermostat Fan State . 3–25
Thermostat Mode . 3–25
Thermostat Operating State . 3–26
Thermostat Setpoint . 3–26

About Z-Wave Scenes . 3–27
Creating and setting up scenes .3–27
Activating scenes .3–30

About Z-Wave Associations . 3–30
Single Instance Associations .3–30
Multi Instance Associations .3–31
Multi Channel Associations .3–32

About Device Profiles . 3–32

ZWave Plugin Guides . 4–33
ZWave Plugin Guides Summary . 4–33

zwave-NetworkSceneExtManager . 4–33

zwave-NetworkSceneManager . 4–33

zwave-ZWave Device Manager . 4–34

zwave-ZWave Point Manager . 4–35
NiagaraAX-3.5

Z-Wave Driver Guide
ii

March 24, 2015
Z-Wave Component Guides . 5–37
Z-Wave Component Guides Summary . 5–37

zwave-CcApplicationStatus .5–37
zwave-CcBasicTariffInfo .5–38
Proxy points . 5–38
zwave-CcClock .5–38
zwave-CcHrvControl .5–38
Proxy points . 5–38
zwave-CcHrvStatus .5–39
Proxy points . 5–39
zwave-CcIndicator .5–40
zwave-CcMultiInstance .5–40
zwave-CcProtection .5–40
zwave-CcSwitchAll .5–41
zwave-CcTime .5–41
zwave-CcWakeUp .5–41
zwave-NodeInformation .5–42
zwave-UserInfo .5–42
zwave-ZWaveAssociationDeviceExt .5–42
zwave-ZWaveAssociationGroup .5–42
zwave-ZWaveConfigDeviceExt .5–43
zwave-ZWaveDevice .5–43
zwave-ZWaveManufacturerSpecific .5–43
zwave-ZWaveNames .5–44
zwave-ZWaveNetwork .5–44
zwave-ZWaveNetworkScene .5–44
zwave-ZWaveNetworkSceneConfig .5–44
zwave-ZWavePointDeviceExt .5–44
zwave-ZWaveProxyExt .5–45
zwave-ZWaveSceneActuatorConf .5–45
zwave-ZWaveSceneDeviceExt .5–45
zwave-ZWaveSceneNetworkExt .5–45
zwave-ZWaveSerialPlugin .5–45
zwave-ZWaveThermostat .5–45
zwave-ZWaveThermostatSetPointProxyExt .5–45
zwave-ZWaveUserDeviceExt .5–45
zwave-ZWaveVersion .5–46
NiagaraAX-3.5

Z-Wave Driver Guide
iii

March 24, 2015
NiagaraAX-3.5

Z-Wave Driver Guide
iv

PREFACE

Preface
This documents usage of the Z-Wave® (ZWave) driver for the NiagaraAX Framework.

Note: The audience is considered to be knowledgeable in Z-Wave technology and is NiagaraAX Certified.
The following main sections are in this document:
• This Preface, which provides brief descriptions of the major sections in this document below.

Also included are a few Z-Wave terms and a Document Change Log.
• “Compatibility, Software Installation, and Jobsite Requirements” on page 1-1

Explains the Z-Wave protocols and versions supported, including all supported Z-Wave command
classes, as well as the NiagaraAX platform, software, and licensing requirements. Also included are
jobsite requirements, explaining the need for a Z-Wave portable primary controller, the Z-Wave op-
eration modes for the installed JACE, and special considerations about battery-powered devices.

• “Z-Wave Driver Quick Start” on page 2-1
Provides several quick procedures for online station configuration to add a ZWaveNetwork, install
the JACE on the Z-Wave network, and review dynamically created Z-Wave proxy points.

• “NiagaraAX Z-Wave Concepts” on page 3-5
Provides concepts behind the Z-Wave driver, including all major components and views, including
various screen captures.

• “ZWave Plugin Guides” on page 4-33
Provides brief summaries of the different ZWave manager views, each with links back to the more
detailed concepts section. Entries are used in NiagaraAX context-sensitive help “On View”.

• “Z-Wave Component Guides” on page 5-37
Provides brief summaries of the different ZWave components, some with links back to the more de-
tailed concepts section. Entries are used in NiagaraAX context-sensitive help “Guide On Target”.

Z-Wave terms
The following list of terms and abbreviations is specific to Z-Wave usage in NiagaraAX, and covers
entries used in this document. For terms found in other Z-Wave related publications, refer to documents
published by Zensys. See “Z-Wave reference documents” on page 1-1.

Note: For general NiagaraAX terms, see the Glossary in the User Guide.
battery-powered device To conserve batteries, most battery-powered Z-Wave slave devices “sleep”
most of the time, and thus can be considered “non-listening” nodes. Whereas, line-powered slave devices
are considered “always listening” nodes. Z-Wave driver support for battery-powered devices requires
special considerations. See “Battery-powered (non-listening) device considerations” on page 1-5.

FLiRS (Frequently Listening Routing Slave) - A special battery-powered Z-Wave device that functions
as a routing slave. See “Frequently Listening Routing Slave (FLiRS) device considerations” on page 1-5.

group Multiple Z-Wave devices can be controlled with a single command when placed in a group.
Groups are named Group 1, Group 2, and so on.

node A Z-Wave device installed on a Z-Wave network. Each node must have a unique “node ID”, an
integer value from 1 to 223. Most nodes are slave devices; one or more nodes is a controller device.

primary controller The main device used to set up a Z-Wave network. There can be only one primary
controller, and it must be used to add or delete devices. A primary controller can be a portable device like
a hand-held remote, or a static controller (permanently installed and never removed).
NiagaraAX-3.5

Z-Wave Driver Guide
v

 Document Change Log
March 24, 2015
routing slave A Z-Wave device that has all slave functionality plus can hold several routes. Routes are
assigned by a controller.

scene A scene is a pre-defined combination of actions that occurs from one command. Scenes are typ-
ical to lighting control. However, if other devices support scenes, a scene may include other combinations
of Z-Wave device control. For example, a scene may close the blinds, turn on inside lights to a pre-set
level, and activate an outdoor motion sensor. Multiple scenes can be defined (Scene 1, Scene 2, etc.).

secondary controller A Z-Wave network supports multiple controllers, where a secondary controller
may be added. A secondary controller cannot be used to add or delete devices; however, it may be able to
replicate the configuration of the primary controller.

slave A Z-Wave device that can transmit information to other Z-Wave nodes only when requested to
do so. Slave devices usually have physical inputs and outputs for monitor and control, and typically are
the most numerous nodes on a Z-Wave network.

SUC (Static Update Controller) A secondary controller defined as the SUC (Static Update Control-
ler) receives updates from the primary controller when node changes occur on the Z-Wave network. Oth-
er controllers on the network can individually request the SUC for network updates. There can be only
one SUC on a Z-Wave network.
SIS (SUC ID Server) An SUC (Static Update Controller) can further be configured as a node ID serv-
er, allowing all other nodes to include/exclude nodes. The SIS automatically becomes the primary con-
troller when enabled. To maintain consistency, all node ID allocations are maintained by the SIS. There
can be only one SIS on a Z-Wave network.

Document Change Log
Updates (changes/additions) to this NiagaraAX Z-Wave Driver Guide document are listed below.
• Updated: March 24, 2015

Added Z-Wave legal information to Copyright and Patent Notice information.
• Updated: November 15, 2010

Content changes to describe added functionality in the (zwave) driver module starting in build
3.5.33.1, for official release. Document changes include more entries added in this preface’s collec-
tion of “Z-Wave terms”, and in the “Compatibility, Software Installation, and Jobsite Requirements”
section, an updated section “Battery-powered (non-listening) device considerations” on page 1-5,
followed by a new section “Frequently Listening Routing Slave (FLiRS) device considerations”.
In the main “NiagaraAX Z-Wave Concepts” section, new ZWaveNetwork properties “Auto Associ-
ate”, “Auto Route”, and “Read Back Time” are described in the section “Other interface related prop-
erties” on page 3-9, and a new “flirs” tuning policy is noted in “ZWaveNetwork tuning policy notes”
on page 3-10. New device-level properties “Max Fail Until Device Down” and “Read Device On Event
Update” are described in the section “ZWaveDevice common properties” on page 3-15, along with
new device “Node Info” properties “Is Listening”, “Optional Functionality”, “Sensor250ms”, and
“Sensor1000ms”. A new (and related) “Request Protocol Information” action is also described in
“ZWaveDevice actions” on page 3-19. The “About ZWave proxy points” section “ZWaveProxyExt
properties” on page 3-21 was updated to describe new properties “Rewrite Emergency Cmds”, “Age”,
and “Next Wake Up In”. Various figures showing property sheet screen captures were updated to
reflect new properties.

• Updated: November 3, 2010
Minor typo corrections, scene descriptions were modified slightly to emphasize lighting.

• Publication: August 17, 2010
Initial document.
NiagaraAX-3.5

Z-Wave Driver Guide
vi

1CHAPTER

Compatibility, Software Installation, and Jobsite Requirements
Currently, this section has the following main subsections:
• Compatibility
• Z-Wave command classes supported
• License requirements
• Software installation
• Z-Wave jobsite requirements

Compatibility
The NiagaraAX ZWave driver has the following compatibility criteria:
• NiagaraAX platform compatibility
• Z-Wave compatibility

NiagaraAX platform compatibility
Note: NiagaraAX-3.5 or later is required.

The ZWave driver will function on all NiagaraAX platforms that support JACE option cards or RS-232
serial communications.
• If a a QNX-based JACE, that is a JACE-2, 6, 7, or XPR (M2M JACE) series, a Z-Wave option card can

be installed and used as the wireless Z-Wave interface.
• Alternatively, a serially connected, external, third-party Z-Wave gateway device can be used as the

wireless Z-Wave interface. Table 1-1 lists gateway models that were tested with the ZWave driver.

Table 1-1 Tested third-party Z-Wave serial gateways

Z-Wave compatibility
The ZWave driver was developed against the Z-Wave Command Class Specification, Version 8, and also
the Z-Wave Device Class Specification, Version 18. Specification documents for both are included in the
Z-Wave reference documents section that follows. The driver was tested with Z-Wave Gateways running
versions 2.24 and 2.74 of the static controller library.

Z-Wave reference documents
The following documents, listed by Zensys document ID number and title, may be referenced in this
driver document.
1. SDS11060-8 Z-Wave Command Class Specification
2. SDS10242-18 Z-Wave Device Class Specification
3. SDS10243-8 Z-Wave Protocol Overview
4. INS102044-5 Z-Wave Node Type Overview and Network Installation Guide
Also see the section “Z-Wave command classes supported” on page 1-2.

Manufacturer Model Description
Advanced Control Technologies, Inc. ZCX101 (US) HomePro Z-Wave Computer Interface

ZCS201 (EU)
Cooper Wiring Devices RF232 (US) Serial Interface Programming Module
HomeSeer Z-Troller (US) Serial Interface Programming Module
NiagaraAX-3.5

Z-Wave Driver Guide
1–1

Z-Wave command classes supported Chapter 1 – Compatibility, Software Installation, and Jobsite Require-
ments

Z-Wave command classes supported

When replicating (receiving) a Z-Wave network as a static secondary controller, or when adding Z-Wave
devices with the JACE operating as the SUC or SIS node, the driver automatically creates all Niagara
components and proxy points. These map to the Z-Wave command classes that each device supports.
The NiagaraAX ZWave driver supports the command classes listed in Table 1-2, which also provides
links to related reference topics in this document.

Note: Command classes listed with an asterisk (*) have been implemented, but have not yet been tested against
a Z-Wave device that also supports that command class.

Table 1-2 Supported Z-Wave command classes

Z-Wave Command Class Ver. Component under ZWaveDevice? Proxy points under ZWaveDevice?
Alarm Sensor V1 None. 1 to 6 BooleanPoints.
Alarm Silence V1 None. None, action added to points above.
All Switch V1 switchAll (CcSwitchAll) None.
Application Status * V1 applicationStatus (CcApplicationStatus) None.
Association V1 associations (ZWaveAssociationDevice-

Ext), groupn (ZWaveAssociationGroup)
None.

Association * V2
Basic V1 None. 1 “basic” (type varies by device class)
Basic Tariff Information V1 basicTariffInfo (CcBasicTariffInfo) Yes, 1 or 2 Proxy points.
Battery V1 None. 1 “batteryLevel” and 1 “batteryLow”.
Battery Sensor V1 None. 1 “batterySensor”.
Binary Switch V1 None. 1 “switch” BooleanWritable.
Binary Toggle Switch V1 None. 1 “switchToggle” BooleanWritable
Clock V1 clock (CcClock) None.
Configuration V1 configuration (ZWaveConfigDeviceExt) None.
Door Lock * V1 None. —
Energy Production * V1 None. 4 NumericPoints.
Hail V1 No. (fires “Hail” topic on parent device). None.
HRV Status * V1 hrvStatus (CcHrvStatus) Yes, from 1 to 7 Proxy points.
HRV Control * V1 hrvControl (CcHrvControl) Yes, from 1 to 7 Proxy points.
Indicator V1 indicator (CcIndicator) None.
Lock V1 None. 1 “lock” Boolean Writable.
Manufacturer Specific V1 manufacturerSpecific

(ZWaveManufacturerSpecific)
None.

Meter V1 None. 1 “meterValue” NumericPoint.
Move To Position Window Covering * V1 None. 1 “mtpWindowCovering” NumericWrit-

able.
Multi Channel Association V2 associations (ZWaveAssociationDevice-

Ext), groupn (ZWaveAssociationGroup)
plus additional assocInEp(n) slots

None.

Multi Instance V1 multiInstance (CcMultiInstance), where
V2 exposes additional properties

None.
Multi Channel V2
Multilevel Sensor V1 None. 1 “multiLevelSensor” NumericPoint,

where V2 has more units/precision facetsMultilevel Sensor V2
Multilevel Switch V1 None. 1 “switch” NumericWritable.
Multilevel Switch V2
Node Name & Location V1 Naming (ZWaveNames) None.
Protection V1 protection (CcProtection) None.
Pulse Meter V1 None. 1 “pulseCount” NumericPoint.
NiagaraAX-3.5

Z-Wave Driver Guide
1-2

Chapter 1 – Compatibility, Software Installation, and Jobsite Requirements License requirements
March 24, 2015 About a Z-Wave portable primary controller

License requirements
To use the NiagaraAX ZWave driver, you must have a target NiagaraAX host (JACE) that is licensed with
the “zwave” feature, as well as the “serial” feature. In addition, the “zwave” feature may have other
device limits or proxy point limits.

Software installation
From your PC, use the Niagara Workbench 3.5.nn or higher installed with the “installation tool” option
(checkbox “This instance of Workbench will be used as an installation tool”). This option installs the
needed distribution files (.dist files) for commissioning various models of remote JACE platforms. The
dist files are located under your Niagara install directory under a “sw” subdirectory. For more details, see
“About your software database” in the Platform Guide.
Apart from installing the 3.5.nn or higher version of the Niagara distribution in the JACE, make sure to
also install the zwave module too, plus any modules shown as dependencies. For more details, see “About
the Commissioning Wizard” in the JACE NiagaraAX Install and Startup Guide.
 See the next section Z-Wave jobsite requirements for additional jobsite requirements.

Z-Wave jobsite requirements
You must install the JACE on the Z-Wave network using a “Z-Wave portable primary controller”. The
portable primary controller is also used to install other Z-Wave devices on that network.
First, you must decide on the Z-Wave operating mode for the JACE. This may depend on the capabilities
of that primary controller, as well as if battery-powered Z-Wave slave devices will be installed.
The following sections provide more background details:
• About a Z-Wave portable primary controller
• About JACE Z-Wave operation modes
• Battery-powered (non-listening) device considerations
• Frequently Listening Routing Slave (FLiRS) device considerations

About a Z-Wave portable primary controller
A Z-Wave portable primary controller is a device that you need to install (or remove) Z-Wave devices as
“nodes” on a Z-Wave network. Internally, it maintains the network management for the network,
including all available node ID (addressing) information.
As a portable device, you carry the primary controller around the jobsite, such that you can key in an
operation (such as adding a node) while physically next to that device. Most Z-Wave devices have a
button or switch that you press to coordinate this operation from the “slave” side.

Scene Activation V1 Scenes (ZWaveSceneNetworkExt), scenes
(ZWaveNetworkScene)

None.

Scene Actuator Configuration V1 userAssigned (ZWaveNetworkSceneCon-
fig), scenen (ZWaveSceneActuatorConf)

None.

Thermostat Fan Mode V1 None. 1 “fanMode” EnumWritable.
Thermostat Fan State V1 None. 1 “fanState” EnumPoint.
Thermostat Mode V1 None. 1 “mode” EnumWritable,

where V2 has more possible modes.Thermostat Mode V2
Thermostat Setpoint V1 None. 1 to 16 NumericWritable points, depending

on the setpoints supported by the device.Thermostat Setpoint V2
Time V1 time (CcTime). None.
User Code * V1 users (ZWaveUserDeviceExt),

usern (UserInfo).
None.

Version V1 version (ZWaveVersion). None.
Wake Up V1 wakeUp (CcWakeUp).

V2 exposes additional properties.
None.

Wake Up V2

Z-Wave Command Class Ver. Component under ZWaveDevice? Proxy points under ZWaveDevice?
NiagaraAX-3.5

Z-Wave Driver Guide
1-3

Z-Wave jobsite requirements Chapter 1 – Compatibility, Software Installation, and Jobsite Require-
ments

Z-Wave primary controllers also typically allow you to engineer other facets of a Z-Wave network too,
such as adding “groups” and “scenes”. However, it is usually faster and simpler to do this from the Niagara
station interface to the Z-Wave network.

About JACE Z-Wave operation modes
As a secondary controller, the JACE can be installed to operate in one of these three Z-Wave modes:
• Secondary Static Controller

Or simply “Static Controller”. This mode is not recommended if any battery-operated Z-Wave slave
devices are installed. In addition, either of the other two operating modes provide better overall per-
formance and ease of operation.

• Static Update Controller (SUC)
This is a better mode, and suitable if battery-powered slave devices are installed.

• SUC ID Server (SIS)
This may be the best mode, as it provides all SUC functionality, plus additional flexibility.

Secondary Static Controller
Devices on the Z-Wave network should be installed before adding the JACE operating in this mode.
• The portable primary controller must support replication — to send its network configuration to a

secondary controller.
Note: In this mode, if battery-powered devices are used, and new devices are added after the battery-powered

devices are modeled in the JACE station, the JACE will no longer receive “wake up” notifications from the
battery-powered nodes. This happens because subsequent replications change the JACE’s interface node
ID. For related details, see “Battery-powered (non-listening) device considerations”.

Static Update Controller (SUC)
When a controller is configured as an SUC, the primary controller automatically sends network updates
to the SUC, for example, when a new node is added to the network. Therefore the new node automatically
appears in the SUC’s (JACE’s) topology map.
Other controllers in the network may individually request the SUC for network updates. If no SUC is
present, the primary controller is responsible for updating all controllers in the network. Typically, this
will be a manual process for the installer.
The Z-Wave network should not already be installed when installing the JACE to operate in this mode. If
already installed, you must use the primary controller to uninstall all Z-Wave nodes first.
There can be only one SUC in a Z-Wave network (the JACE)—the first device installed.
The portable primary controller must support:
• Replication — to send its network configuration to a secondary controller (JACE).
• Transfer of primary controller role - to send this role to the JACE.
• Transfer back of the network configuration - to receive this information back from the JACE.
The primary controller must remain on the jobsite, dedicated to this specific job.

SUC ID Server (SIS)
When a SUC is also configured as node ID server (SIS), it enables all other controllers to include/exclude
nodes. The SIS automatically becomes the primary controller in the network when enabled. To maintain
consistency, all node ID allocations are maintained by the SIS.
The Z-Wave network should not already be installed when installing the JACE to operate in this mode—
if already installed, you must uninstall all Z-Wave nodes first.
There can be only one SIS in a Z-Wave network (the JACE)—the first device installed.
The portable primary controller must support all items listed in the “Static Update Controller (SUC)”
section, plus:
• Be able to operate as a Z-Wave “Inclusion Controller”.
After the job is installed (if needed), the primary controller can be taken from the jobsite, “cleared”, and
used to install other jobs.
NiagaraAX-3.5

Z-Wave Driver Guide
1-4

Chapter 1 – Compatibility, Software Installation, and Jobsite Requirements Z-Wave jobsite requirements
March 24, 2015 Battery-powered (non-listening) device considerations

Battery-powered (non-listening) device considerations
Support of battery-powered Z-Wave devices requires special considerations. These devices “sleep” the
majority of the time, “waking up” on a defined interval, or when the device detects an event.
As previously mentioned, to properly support battery-powered nodes, the JACE should be configured as
an SUC or SIS. This will keep the JACE’s Z-Wave interface node ID from changing. It also allows notifi-
cation when a Z-Wave device has been installed on the network. The JACE can “discover” a battery-
powered device when it is installed, since it is in an awake state at that time.
The “Wake Up” command class of a battery-powered device is configured with the node ID of the device
that it will send wake-up notifications. If the JACE is configured as an SUC or SIS, the node ID of the
JACE’s Z-Wave interface is used—otherwise, a Z-Wave broadcast address is used.
If the battery-powered device also supports associations, the driver automatically adds the JACE to the
devices’ association groups. Typically, this causes the JACE to be notified via the “Basic” command class
report when the device detects an event.
There seems to be some inconsistency between vendors and devices in the way battery-powered devices
react when they detect an event. Some devices send a Wake Up command class wake up notification
message, while others only send a Basic command class report to the association group members.
The Z-Wave driver does support posting changes to the Configuration and Associations command
classes, so that those changes will be processed on the next wake up. Other command classes that the
battery-powered device may also support require a coordinated manual wake up of the device, prior to
making changes.
The “Naming” command class is an example. If you wish to change the Z-Wave name or location of a
battery-powered device, it requires that the device is awake when you make the change.
When the driver evaluates a device as asleep, it sets the device's stale flag. When the device is detected as
awake, the stale flag is cleared.
The driver does not ping the device to determine device up/down status. Its down flag will never be set,
unless the device also implements the WakeUp command class. If it does, the device is marked down only
if a WakeUp Notification message is not received at the interval specified in its WakeUp command class.

Frequently Listening Routing Slave (FLiRS) device considerations
FLiRS devices (Frequently Listening Routing Slaves) are battery-powered devices that are considered to
be always listening. These devices rely on a special extended preamble, called a “beam”, which allows a
sleeping device to detect a frame within a very short wake-up interval.
The Z-Wave driver identifies these devices by either of the Sensor250ms or Sensor1000ms flags being set
in the device’s “NodeInfo” component. Such devices often include smoke detectors, or door or window
monitors, where input values seldom change, but which still need to participate in message routing.
Because these devices are considered to be always listening, the driver assumes that it can send a message
to one at any time. So the normal device ping and points polling still occurs, with the following exception:
• A special “flirs” tuning policy is automatically added to the ZWaveNetwork.

This policy has a “MinReadTime” property with a default value of 1 hour. This property specifies the
minimum time that must pass proxy point polls.With the MinReadTime set to 1 hour, proxy points
in the device will not be polled any faster than once per hour.
Note: Points under a FLiRS device automatically have their tuning policy set to the “flirs” tuning
policy.

The main purpose is to poll these points at a much slower rate without consuming the “Slow” Poll
Scheduler thread. If one of these points actually changed, the driver would be notified unsolicited,
because that device would have been automatically associated to the JACE during the install process.
NiagaraAX-3.5

Z-Wave Driver Guide
1-5

Z-Wave jobsite requirements Chapter 1 – Compatibility, Software Installation, and Jobsite Require-
ments

NiagaraAX-3.5

Z-Wave Driver Guide
1-6

2CHAPTER

Z-Wave Driver Quick Start
This section provides a collection of procedures to use the NiagaraAX ZWave driver to build a
ZWaveNetwork with ZWaveDevices and proxy points. Like other NiagaraAX drivers, you do most
configuration from special “manager” views and property sheets using Workbench.

Note: A Z-Wave “portable primary controller” is required, along with a plan for the Z-Wave operation mode to
be used by the JACE. In addition, there are licensing and software requirements for the driver. Please see
“Compatibility, Software Installation, and Jobsite Requirements” on page 1-1 for more details.
These are the main quick start subsections:
• Add and configure the ZWaveNetwork
• Install the JACE on the Z-Wave network
• Review ZWave proxy points and device child components

Add and configure the ZWaveNetwork
• Add the ZWaveNetwork
• Configure ZWaveNetwork communication parameters

Add the ZWaveNetwork
The ZWaveNetwork is the top-level ZWave component in the station.

To add a ZWaveNetwork in the station
Step 1 Double-click the station’s Drivers container, to bring up the Driver Manager.
Step 2 Click the New button to bring up the New network dialog. For more details, see “Driver Manager New

and Edit” in the Drivers Guide.
Step 3 Scroll to select “Z Wave Network,” number to add: 1 and click OK.

This brings up a dialog to name the network.
Step 4 Click OK to add the ZWaveNetwork to the station.

You should have a ZWaveNetwork named “ZwaveNetwork” (or whatever you named it), under your
Drivers folder, showing a status of “{fault}” and enabled as “true.”
After you Configure ZWaveNetwork communication parameters, status should change to “{ok}”.

Configure ZWaveNetwork communication parameters
In the ZWaveNetwork property sheet you must define at least one parameter for communications.

To set the ZWaveNetwork communications parameters
To set the communications parameters for a ZWaveNetwork:

Step 1 Right-click the ZWaveNetwork and select Views > Property Sheet.
The Property Sheet appears.

Step 2 Expand the Comm Plug In slot, then its Serial Port Config slot.
Set the properties for the JACE serial port used, starting with Port Name. Properties are as follows:
• Port Name: none — Enter the JACE RS-232 port being used, like COM2 or COM3.
• Baud Rate: Baud9600 — Or choose different from selection list.

Note: For a Z-Wave JACE option card, set this to Baud115200 (115,200 baud).
The remaining serial port properties below are left at defaults (8, 1, N, none).
NiagaraAX-3.5

Z-Wave Driver Guide
2–1

Install the JACE on the Z-Wave network Chapter 2 – Z-Wave Driver Quick Start
Configure ZWaveNetwork communication parameters March 24, 2015

• Data Bits: Data Bits8 — Or choose different from selection list.
• Stop Bits: Stop Bit1 — Or choose different from selection list.
• Parity: None — Or choose different from selection list.
• Flow Control Mode: none — Or choose different using checkbox.

Note: If an external Z-Wave serial gateway is configured differently from the defaults above, adjust the baud rate,
data bits, stop bits, parity, and flow control settings as necessary to match.

Step 3 Click the Save button.
For further details on the ZWaveNetwork, see “About the ZWaveNetwork” on page 3-7.

Install the JACE on the Z-Wave network
The Z-Wave driver is designed to act as a Z-Wave secondary controller, operating in one of three modes:
as a Static Controller, a Static Update Controller (SUC), or a SUC ID Server (SIS) on the Z-Wave network.
If possible, it is highly recommended that you configure the network so that the JACE is an SIS or SUC.
This provides the best overall performance and ease of installation.

Note: If battery-powered devices are going to be used on the Z-Wave network, consider this SUC or SIS operation
as a requirement. For related details, see “About JACE Z-Wave operation modes” on page 1-4.
The two main methods use these different install procedures:
• To install the JACE as an SUC or SIS (recommended)
• To install the JACE as a Static Controller

To install the JACE as an SUC or SIS
The portable primary controller used to install Z-Wave devices must support SUC and/or SIS function-
ality. The JACE must be the first Z-Wave device installed, in order for it to operate as an SUC or SIS. It is
assumed that the JACE has already been configured, and it has a running station with a ZWaveNetwork.
Use the following procedure to install the JACE on the Z-Wave network as an SUC or SIS device.

Step 1 Uninstall any Z-Wave devices previously installed, using the portable primary controller.
Step 2 It is recommended you reset the portable primary controller back to its factory defaults.

This should remove any network/node information, ensuring that the JACE will be the first node added
(as a result of transferring the primary role to it, later in this procedure).

Step 3 Open the property sheet of the ZWaveNetwork.
The property “Configure As SIS” is used to select the JACE to act as either an SIS or SUC.
The default value is true (SIS). If SUC operation is needed, change to false, and Save.

Step 4 Transfer the primary controller role to the JACE.
1. Double-click the network, to bring up the device manager (ZWave Device Manager).
2. Prepare the portable primary controller to initiate a replicate (send), to shift the primary role.

Note: Although it may seem the primary controller has nothing to send on replication (it was cleared in Step 2),
in fact this results in the JACE being added as the first node, with the node ID 2.
3. In the ZWave Device Manager, click the button ReplicateReceive.

Within a few seconds, from the primary controller, complete the replication send / primary role
shift, as started in substep 2.

4. After this replication completes, the “Home ID” property of the ZWaveNetwork should match that
of the primary controller, and its “Interface Node Id” property should be 2.

Step 5 Transfer back to the primary controller. If SIS operation has been selected, this make the portable
primary controller a “Z-Wave Inclusion Controller”.
1. Using the portable primary controller, initiate a replicate receive.
2. In the ZWave Device Manager, click the button TransferPrimary.

(This substep must be done within 30 seconds of the previous substep.)
3. This should leave the JACE operating in the desired SIS or SUC role.
Now you can use the portable primary controller to install other Z-Wave devices. As each device is
installed, the JACE is automatically notified. The Z-Wave driver automatically adds the appropriate
ZWaveDevice component, including child components and proxy points, according to the device’s
supported Z-Wave command classes.

Note: By operating in the SIS or SUC mode, this eliminates the need for any additional replications to the JACE.
NiagaraAX-3.5

Z-Wave Driver Guide
2-2

Chapter 2 – Z-Wave Driver Quick Start Review ZWave proxy points and device child components
March 24, 2015 Configure ZWaveNetwork communication parameters

For a summary of how all the command classes are modeled, including the dynamically added compo-
nents, see “Z-Wave command classes supported” on page 1-2.

To install the JACE as a Static Controller
Note: Z-Wave driver versions prior to 3.5.25.7 only supported this mode of operation. However, it is recom-

mended that the JACE be configured as an SIS or SUC instead. See “To install the JACE as an SUC or SIS”.
If these modes are not available, the JACE will still work as a Static Controller. However, issues with
battery-powered devices are likely, as described in “Z-Wave jobsite requirements” on page 1-3.
The Z-Wave network of devices should already be installed, using a portable primary controller. This
primary controller must support replication to a secondary controller (in this case, the JACE). It is
assumed that the JACE has already been configured, an it has a running station with a ZWaveNetwork.
Use the following procedure to install the JACE on the network, while replicating network information
from the portable primary controller.

Step 1 Using the portable primary controller used to install Z-Wave devices on that network, prepare to initiate
a replicate (send).

Step 2 Double-click the ZWaveNetwork, to bring up the device manager (ZWave Device Manager).
1. In the ZWave Device Manager, click the button ReplicateReceive.
2. After a second or two, while holding the Z-Wave portable primary controller near the JACE, initiate

the replicate send. (You have up 30 seconds after clicking ReplicateReceive.)
This automatically starts a discovery job that performs the following sequence:
• Transfers the Z-Wave network topology from the Z-Wave portable primary controller to the

Z-Wave secondary controller (JACE).
• Adds a ZWaveDevice (ZWaveDevice or ZWaveThermostat) for each slave Z-Wave device that

is discovered.
• Reads the Z-Wave node information from each device, to determine the command classes sup-

ported by that device.
• For each command class that the device supports (and that the driver also supports), adds an

associated component under the device object, or proxy points,
Step 3 When the discovery job completes, the station should have all the components and points to provide

monitor and control functions for each of the network’s Z-Wave devices. For each device, the Z-Wave
driver automatically adds the appropriate ZWaveDevice component, including child components and
proxy points, according to the device’s supported Z-Wave command classes.

Note: If battery-powered devices are involved, it is recommended to force each battery-powered device to “wake
up” 3 times for the JACE to learn all of its command classes. Typically, you do this by pressing a button or
switch on a battery-powered device.
For a summary of how all the command classes are modeled, including the dynamically added compo-
nents, see “Z-Wave command classes supported” on page 1-2.

Review ZWave proxy points and device child components
As with device objects in other drivers, each ZWaveDevice has a Points extension that serves as the
container for proxy points. The default view for any Points extension is the Point Manager (in this case,
the “ZWave Point Manager”). Use it to review (and if necessary), edit ZWave proxy points under any
ZWaveDevice. For more details, see “ZWave Point Manager” on page 3-20.

Note: Unlike point managers in almost all other drivers, you do not add proxy points using the ZWave Point
Manager (no “New” or “Add” buttons, nor any “Learn mode” with a Discover button and pane). All
available proxy points are automatically created. Of course you can add alarm or history extensions, link
into other station logic, and “bind” to Px widgets in PxPages, just as with any other proxy points.
In addition to proxy points, some data is modeled by dynamically added “child components” directly
under each ZWaveDevice. As with proxy points, these child components will vary from one device to
another, based on the Z-Wave command classes each device supports.
See the following procedures:
• To review ZWave proxy points
• To review ZWave device child components
NiagaraAX-3.5

Z-Wave Driver Guide
2-3

Review ZWave proxy points and device child components Chapter 2 – Z-Wave Driver Quick Start
Configure ZWaveNetwork communication parameters March 24, 2015

To review ZWave proxy points
Once a ZWaveDevice is added, any available proxy points are already included. These will vary by the
number and types of Z-Wave command classes that the device supports. You can get statuses and values
back immediately, to review and use as needed.
To review (and edit) ZWave proxy points in a device:

Step 1 In the Device Manager, in the Exts column, double-click the Points icon in the row
representing the device you wish to review points.
This brings up the ZWave Point Manager.

Step 2 Double-click any point for an Edit dialog.
To edit multiple points, hold the Ctrl key and click points to select, then click the Edit button.
In the Edit dialog you can (re)Name the point(s), edit or change point Facets, and change Tuning Policy
Name, if needed. Additional properties are also available for editing, but are rarely if ever needed (Device
Facets, for example).
Default point names are dependent on the command class, and typically use a “camel case” convention,
starting with a lowercase letter—for example: “switchToggle” or “dimmer”.
For more information, see “ZWave Point Manager” on page 3-20, “About ZWave proxy points” on page
3-21, and “ZWave proxy points by default name” on page 3-23.

To review ZWave device child components
Once a ZWaveDevice is added, all dynamic “child components” are already included. These will vary by
the number and types of Z-Wave command classes that the device supports. You can expand the parent
device to review and sometimes write values to properties in these child components. Or, as needed you
can invoke actions, or link properties or actions into station control logic.
To review ZWave “child components” for any ZWaveDevice:

Step 1 In the Nav tree, expand the ZWaveDevice to see child components. All components listed under “Points”
are dependent on the command classes supported.
Default names are sometimes reflective of the command class, and typically use a “camel case”
convention, starting with a lowercase letter—for example: “manufacturerSpecific” or “switchAll”.
Double-click any child component to see its properties (by themselves).
Or, you can go to the property sheet of a ZWaveDevice to see these same child components listed, and
then expand any of interest.

Step 2 Right-click a child component to see any available actions.
For more information, see “About the ZWaveDevice” on page 3-14 and “ZWaveDevice child compo-
nents” on page 3-18.
NiagaraAX-3.5

Z-Wave Driver Guide
2-4

3CHAPTER

NiagaraAX Z-Wave Concepts
This section provides conceptual details on the NiagaraAX ZWave driver and its components, including
views. These are the main subsections:
• About Z-Wave to NiagaraAX Architecture
• About the ZWaveNetwork
• ZWave Device Manager
• About the ZWaveDevice
• ZWave Point Manager
• About ZWave proxy points
• About Z-Wave Scenes
• About Z-Wave Associations
• About Device Profiles
NiagaraAX-3.5

Z-Wave Driver Guide
3–5

About Z-Wave to NiagaraAX Architecture Chapter 3 – NiagaraAX Z-Wave Concepts
Modeling Z-Wave in the NiagaraAX station March 24, 2015

About Z-Wave to NiagaraAX Architecture

Z-Wave network architecture includes two main types of devices, or nodes; controllers and slaves. Essen-
tially, controller nodes can calculate routes (and alternative routes) needed in wireless communications,
whereas slave nodes primarily act as physical inputs and outputs on the network. The Z-Wave protocol
supports a network with a maximum of 232 total nodes, including controller nodes and slave nodes.
Typically, a Z-Wave network has far fewer than 232 nodes, with the vast majority being slave nodes.
Different subtypes of controller nodes and slave nodes exist (slave nodes can be “routing slaves”, for
example). At least one controller is required: a primary controller, typically a portable primary controller.
The functionality of any Z-Wave device is determined by the number and types of Z-Wave “command
classes” it supports. An extensive set of command classes is available, most of which are also supported
by the NiagaraAX Z-Wave driver.
In a NiagaraAX integration, the host (JACE) with Z-Wave option card (or external Z-Wave serial
gateway) installs on the Z-Wave network as a controller node—minimally as a secondary “Static
Controller”. At installation time, the JACE can be promoted to a “Static Update Controller” (SUC) or
“SUC ID Server” (SIS), providing that the (original) portable primary controller is capable. For related
details, see “About JACE Z-Wave operation modes” on page 1-4.

Modeling Z-Wave in the NiagaraAX station
In the JACE station running the ZWave driver, a ZWaveNetwork models all slave nodes, where each node
is represented by a ZWave device component (either a ZWaveDevice or ZWaveThermostat). No
controller node is modeled. For example, no device component models the portable primary controller
or the JACE’s Z-Wave interface (apart from some ZWaveNetwork properties). However, the Z-Wave
“node ID” value of 1 remains reserved for the Z-Wave portable primary controller.
Each ZWave device component, along with all its child components, is automatically (dynamically)
added in the JACE station, once the JACE is installed on the Z-Wave network. Components and proxy
points are automatically determined by a device’s supported Z-Wave command classes. This varies from
almost any other NiagaraAX driver, where some manual addition (or discovery and selection process), is
needed using the network’s “Device Manager” view, as well as in each device’s “Point Manager” view.
Apart from this, the standard NiagaraAX network architecture applies, similar to other serial-based
polling drivers. See “About Network architecture” in the Drivers Guide for more details. For example,
real-time data is modeled using ZWave proxy points, which reside under ZWave devices, which in turn
reside under a ZWaveNetwork container in the station’s DriverContainer (Drivers).
Hierarchically, the component architecture remains: network, device, points extension, points. The
points extension is the only obvious “device extension” under a ZWave device—meaning there are no
schedule or history device extensions.
Unique to a ZWaveNetwork are Z-Wave “scenes”, which are modeled at the network level using a “Scenes”
network extension. A scene defines some collection of actions to one or more Z-Wave devices that can
be initiated using a single command. Special views on the network’s “Scenes” extension and child
“scenen” components provide easy methods to add new and edit (define) Z-Wave scenes.

Palette for ZWave driver
Although the zwave module has a palette, it contains only the ZWaveNetwork (and its frozen “Scenes”
network extension). See Figure 3-1.

Figure 3-1 Components in zwave palette

All of the other various Z-Wave components (ZWave devices, components under devices, and proxy
points) do not appear on the palette. Instead, the driver dynamically adds such components under the
station’s ZWaveNetwork, when installing the JACE on the Z-Wave network.
This occurs automatically, based upon “replications” from the Z-Wave portable primary controller, along
with station command class queries to Z-Wave devices on the network. This simplifies component
creation, and enforces proper component hierarchy.
NiagaraAX-3.5

Z-Wave Driver Guide
3-6

Chapter 3 – NiagaraAX Z-Wave Concepts About the ZWaveNetwork
March 24, 2015 ZWave-specific network slots

Note: As with most other NiagaraAX drivers, you rarely need to work from the palette. In this case, usefulness is

limited to when first starting a Z-Wave integration—as an alternative to using the Driver Manager to
add the new ZWave Network. (By copying from the palette, its default baud rate of 115,200 is pre-set to
match that used by the JACE Z-Wave option card).

About the ZWaveNetwork
The ZWaveNetwork is the top-level component for the ZWave driver in a station. On its property sheet
(Figure 3-2), you configure specific settings under the “Comm Plug In” slot to allow communications
to the physical Z-Wave interface (Z-Wave option card or external Z-Wave serial gateway). Properties also
specify the station’s Z-Wave operation mode. Status properties provide feedback on configuration.

Figure 3-2 Property sheet of ZWaveNetwork

The following sections provide more details on ZWaveNetwork properties and slots:
• ZWave-specific network slots
• Common ZWaveNetwork slots
• ZWaveNetwork actions

ZWave-specific network slots
In addition to Common ZWaveNetwork slots, the ZWaveNetwork contains several container compo-
nents and other configuration and status properties that relate directly to Z-Wave operation, as follows:
• Comm Plug In (Z-Wave communications parameters).
• Other interface related properties (mostly Z-Wave interface related).
• ZWave Scenes network extension (for Z-Wave scenes).
NiagaraAX-3.5

Z-Wave Driver Guide
3-7

About the ZWaveNetwork Chapter 3 – NiagaraAX Z-Wave Concepts
ZWave-specific network slots March 24, 2015

Comm Plug In
Communication parameters are set here to match the setup of the network controller’s RS-232 port.
Additionally, a few Z-Wave timeout parameters can be adjusted, and status properties reflect the API
(application programming interface) capabilities of the JACE’s Z-Wave interface.

Figure 3-3 Comm Plug In expanded in ZWaveNetwork (using JACE Z-Wave option card)

The following properties are found under the Comm Plug In component:
• Inter Message Delay

Some installations require a “pause” between adjacent messages to allow time for the Z-Wave inter-
face to “catch up” with its own internal processing. This has the effect of adding time between polls,
so this number should be kept as small as possible. Normally, a setting of “0.0” will work.

• Serial Port Config
Communications parameters are set here to match the set up of the Z-Wave serial gateway’s RS-232
port. See “To set the ZWaveNetwork communications parameters” on page 2-1.

• Zw Ack Timeout
Number of 10 millisecond ticks that the Z-Wave gateway waits for an ACK before timeout.

• Zw Byte Timeout
Number of 10 milliseconds ticks that the Z-Wave gateway waits for a new byte received, once a re-
ceived frame has been detected, before timeout.

• Zw Version
Serial API version of the Z-Wave gateway.

• Zw Compatibility
Contains a number of read-only status properties that reflect serial API functions supported.
NiagaraAX-3.5

Z-Wave Driver Guide
3-8

Chapter 3 – NiagaraAX Z-Wave Concepts About the ZWaveNetwork
March 24, 2015 ZWave-specific network slots

Other interface related properties
Among ZWave-specific network slots, some Z-Wave interface-related properties are further down in the
network’s property sheet (Figure 3-4).

Figure 3-4 Interface related properties in the ZWaveNetwork

These properties include the following:
• Configure As Sis

When set to true (default), the JACE attempts to establish the interface as the SIS for the Z-Wave
network. Otherwise, it attempts to establish the interface as the SUC for the Z-Wave network.

• Home Id
(read-only) The 24 bit Home ID for this Z-Wave network. This is automatically initialized during
replication from a Z-Wave primary controller.

• Interface Node Id
(read-only) The node ID of the Z-Wave interface (JACE Z-Wave option card, or external Z-Wave
serial gateway). This is automatically initialized upon replication from a Z-Wave primary controller.
If the JACE has been correctly installed as an SIS or SUC, this value should be 2.

• Is Primary Controller
(read-only) If true, indicates that the interface is acting as the primary controller for the network.
This is an indication that the interface is acting as an SIS.

• Interface Capabilities
Contains a number of read-only status properties that reflect the Z-Wave interface’s operating mode.
If operating as an SIS, all properties should be true except “Is Secondary”, as shown in Figure 3-4. The
“Is Secondary” property is true only if the JACE is not installed as an SIS or SUC, but instead a Static
Controller. For related details, see “About JACE Z-Wave operation modes” on page 1-4.

• Use Node Names
Default is false. If set to true, the driver automatically creates a display name for each device that also
supports the “Naming” command class (Node Name and Node Location). The display name is a
combination of the device’s location and the name strings, along with node ID number.
For example if device (node 7) named “Kitchen_AC_R” has a Node Name of “CoffeePot” and Node
Location of “Kitchen”, and this property is set true, it will appear listed in all views as:
Kitchen_CoffeePot_7 (instead of Kitchen_AC_R)
If present, display names are used throughout views and dialogs instead of component names.
Note: If set true, any device that does not support the Naming command class appears instead using
a combination of its “specificDeviceClass” and node ID number. For example a device (node 3) named
“Thermostat” might instead appear as “thermostatGeneralV2_3”. Find a device’s specific device
class string under its “Node Info” container slot.

• Auto Associate
If true (the default), the driver automatically creates an association to the JACE for all association
groups supported by a device. This causes the data that is sent as the result of the association group
event to update in the JACE, without waiting for the device to be polled.

• Auto Route
If true (the default) the driver uses an “auto-route transmit option” when sending messages. This op-
tion causes the Z-Wave interface / option card to try transmitting messages via other repeater nodes
NiagaraAX-3.5

Z-Wave Driver Guide
3-9

About the ZWaveNetwork Chapter 3 – NiagaraAX Z-Wave Concepts
Common ZWaveNetwork slots March 24, 2015

if communications fails. Be careful about changing this property, unless you are sure all nodes can be
accessed via direct communications.

• Read Back Time
Specifies the amount of time, in milliseconds, after a Z-Wave writable point sends a write message to
a device that it triggers a subsequent read message to be sent to the device (to update that point's read
value). Setting the value to 0 disables this feature.

ZWave Scenes network extension
Among ZWave-specific network slots is the “Scenes” network extension, used for creating, editing, and
activating Z-Wave scenes. For more details, “About Z-Wave Scenes” on page 3-27.

Common ZWaveNetwork slots
The ZWaveNetwork component includes the typical collection of slots and properties as most other
network components. For general information, See “Common network components” in the Drivers
Guide. The following sections provide additional details:
• ZWaveNetwork status notes
• ZWaveNetwork monitor notes
• ZWaveNetwork tuning policy notes
• ZWaveNetwork poll scheduler notes
• ZWaveNetwork message handling properties

ZWaveNetwork status notes
As with most “fieldbus” drivers, the status of a ZWaveNetwork is either the normal “ok”, or less typical
“down” or “fault” (fault might result from licensing error, or if a non-existent COM port is assigned to
Serial Port Config). The Health slot contains historical timestamp properties that record the last network
status transitions from ok to any other status. The “Fault Cause” property further explains any fault
status.

Note: As in other driver networks, the ZWaveNetwork has an available “Alarm Source Info” container slot you
can use to differentiate ZWaveNetwork alarms from other component alarms in the station. See “About
network Alarm Source Info” in the Drivers Guide for more details.

ZWaveNetwork monitor notes
The ZWaveNetwork’s monitor routine verifies child ZWaveDevice component(s)—the “pingable”
devices in the ZWave driver. The default ping frequency is every 5 minutes, and is adjustable. For general
information, see “About Monitor” in the Drivers Guide.

ZWaveNetwork tuning policy notes
The ZWaveNetwork has the typical network-level Tuning Policy Map slot with a single default Tuning
Policy, as described in “About Tuning Policies” in the Drivers Guide. Typically, only a single “Default
Policy” exists, however, you can add new tuning policies (duplicate and modify) as needed.
If you have multiple tuning policies, you can assign Z-Wave proxy points as needed to different ones.
Under any proxy point’s Proxy Ext properties, in its Tuning Policy Name property, select the
desired tuning policy.

Note: If one or more FLiRS (Frequently Listening Routing Slave) devices are found on the network, the driver
automatically adds another tuning policy named “flirs”. Proxy points under such a device automati-
cally use that tuning policy. For related details, see “Frequently Listening Routing Slave (FLiRS) device
considerations” on page 1-5.

ZWaveNetwork poll scheduler notes
The ZWaveNetwork has the typical Poll Scheduler slot, as described in “About poll components” in the
Drivers Guide. It enables/disables polling, determines fast/normal/slow poll rates, and maintains
statistics about proxy extension polls.
By default, a newly created ZWave proxy point uses the “Normal” poll rate. If needed, you can assign
proxy points to different poll rates. Under any proxy point’s Proxy Ext properties, select the rate in its
Poll Frequency property.
NiagaraAX-3.5

Z-Wave Driver Guide
3-10

Chapter 3 – NiagaraAX Z-Wave Concepts About the ZWaveNetwork
March 24, 2015 ZWaveNetwork actions

ZWaveNetwork message handling properties
The ZWaveNetwork has several “message handling” network-level properties common among serial
drivers, described separately as follows:
• Retry Count

How many retries the communications handler will try to send a Z-Wave message if the initial at-
tempt gets no response.

• Response Timeout
Specifies the maximum time to wait for a response to a Z-Wave message once sent. If a response is
not received before this timeout, the message is resent up to “Retry Count” times, each of which
waits for this timeout period.

• Unsolicited Receive Handler
(near bottom of property sheet) Contains a child “Unsolicited Message Count” property that tallies
all unsolicited messages sent by the Z-Wave interface. For informational use only.

ZWaveNetwork actions
The ZWaveNetwork has a several available actions, as shown in Figure 3-5.

Figure 3-5 Actions on ZWaveNetwork

Actions on the ZWaveNetwork are described as follows:
• Ping

Force a ping message to be sent to the Z-Wave interface.
• Activate Scene

Produces a popup Activate Scene dialog, in which you specify a scene to activate (by scene number).
This multicasts an activate scene message on the Z-Wave network.

• Submit Device Discovery Job
Initiates a Z-Wave device discovery (same as a Discover from the ZWave Device Manager).

• Set All On
Broadcasts a Z-Wave “All On” message on the network. Devices that support the All Switch
command class respond as defined in their “switchAll” component. For reference details, see
“zwave-CcSwitchAll” on page 5-41.

• Set All Off
Broadcasts a Z-Wave “All Off” message on the network. Devices that support the All Switch
command class respond as defined in their “switchAll” component.

• Set Interface Default
Produces a popup confirmation dialog, which if answered “Yes” clears the Z-Wave network topology
information from the JACE’s Z-Wave interface (JACE Z-Wave option card or external Z-Wave se-
rial gateway), setting this back to factory defaults.
Note: Use with caution, as this requires replication back from the primary controller again.

• Save Device Profiles
Forces saving device profiles back to the station’s file system. See “About Device Profiles” on page 3-32.

• Load Device Profiles
Forces loading of device profiles from the station’s file system.
NiagaraAX-3.5

Z-Wave Driver Guide
3-11

ZWave Device Manager Chapter 3 – NiagaraAX Z-Wave Concepts
ZWaveNetwork actions March 24, 2015

ZWave Device Manager

The ZWave Device Manager (Figure 3-6) is the default view for the ZWaveNetwork, and works similar
to other device managers that support online device discovery (with differences noted below). See “About
the Device Manager” in the Drivers Guide for general information.

Figure 3-6 ZWave Device Manager is default view for ZWaveNetwork

Note: The ZWave Device Manager is unique from most Device Managers in that there are no “add” or “new”
buttons—device components are added automatically as a result of “replication” or other network
management functions. See the next section “Buttons (network management functions)” for details.
From this view see all the Z-Wave slave devices on the network, along with their statuses. Figure 3-6
shows an example ZWave Device Manager view shortly after installing the JACE (as an SIS), where a
“ReplicateReceive” (with resulting discovery) and “TransferPrimary” had been performed.

Double-click any device for an Edit dialog (Figure 3-7), or select multiple devices and click the Edit
button, if needed.

Figure 3-7 Edit dialog for ZWaveDevice

Device defaults are like those shown in the Figure 3-7 (left) dialog above, where:
• Name is node_n (reflects the device’s Z-Wave node ID), and
• Node Id is the Z-Wave device’s node ID.

Note: Do not edit any device’s Node Id! This is automatically determined upon replication.
Typically you change a ZWaveDevice’s name, as shown in Figure 3-7, right.
See “About the ZWaveDevice” on page 3-14 for more details on ZWave device components.

In this view, go to the points manager of any ZWaveDevice shown by double-clicking on its (Points)
icon under the Exts column. See “ZWave Point Manager” on page 3-20.
NiagaraAX-3.5

Z-Wave Driver Guide
3-12

Chapter 3 – NiagaraAX Z-Wave Concepts ZWave Device Manager
March 24, 2015 Buttons (network management functions)

Buttons (network management functions)
At the bottom of the ZWave Device Manager are buttons, which apart from the Edit button are:
Discover, ScanForDevices, ReplicateReceive, TransferPrimary, OptimizeNetwork
These provide network management functions, described as follows:

Discover
The Discover button launches a discovery job, which does the following sequence:
• Reads the node list from the Z-Wave interface (Z-Wave option card/ Z-Wave serial gateway).
• For each slave node, add a Z-Wave device to the station, if it doesn’t already exist.
• For each device added to the station, request the “Node Information” data from the device.

• Node Information includes a list of command classes that the device supports.
• For each command class that the device supports and that the driver also supports:

• Create one or more components and/or control points (proxy points) to model the data for the
command class.

• If the components or proxy points already exist, it just updates the data within the component.
• Sends a request to read the data contained within the command class.

• For each device that supports Association:
• Reads the association information.

• Once discovery is complete, the Z-Wave network should be complete with devices and proxy points
to monitor and control the slave Z-Wave devices

ScanForDevices
 ScanForDevices performs the same sequence as a Discover, except it does not read associations.

ReplicateReceive
The ReplicateReceive button is to initiate a replication process. Replication is a Z-Wave process of
copying the network topology information from the Z-Wave primary controller (that was used to install
the Z-Wave network of devices) to the JACE’s Z-Wave interface (JACE Z-Wave option card or external
Z-Wave serial gateway).
The replication process is initiated clicking the ReplicateReceive button just after pressing the
button sequence on the primary controller to send the replication messages.
This launches a “Replication Job” that initiates a sequence of RF messages to transfer the node table into
the JACE’s Z-Wave interface from the primary controller.
Once replication is complete, it automatically launches a discovery job (see “Discover”for details).

TransferPrimary
Some primary controllers have the ability to transfer “primary controller responsibility” during repli-
cation. In this case, the JACE’s Z-Wave interface (JACE Z-Wave option card or external Z-Wave serial
gateway) becomes the primary controller for the network. The user may do this if portable primary
controller used to install the network is not left at the site (it may be used to install other sites).
The TransferPrimary button becomes active if the JACE’s Z-Wave interface has been given the role
of primary controller. Clicking this button initiates a replication process to transfer the network topology
information and primary controller role back to a portable controller that can be used to add or remove
Z-Wave devices to the network.

OptimizeNetwork
This button launches a job that sends messages to each device, instructing them to re-evaluate their
return route to the JACE. You may wish to do this if you changed a device’s physical location.
NiagaraAX-3.5

Z-Wave Driver Guide
3-13

About the ZWaveDevice Chapter 3 – NiagaraAX Z-Wave Concepts
Types of ZWave device components March 24, 2015

About the ZWaveDevice

A ZWaveDevice represents a ZWave slave node, and is mapped to a specific device by its unique Z-Wave
node ID (Node Id) property.
The following main subsections provide more details:
• Types of ZWave device components
• ZWaveDevice common properties
• ZWaveDevice child components
• ZWaveDevice actions

Types of ZWave device components
Although the term “ZWaveDevice” is used throughout this document when referring to any child device
component under the station’s ZWaveNetwork, technically there are two different device components
that represent a Z-Wave slave device:
• ZWaveThermostat
• ZWaveDevice

ZWaveThermostat
A ZWaveThermostat component is dynamically created for any discovered slave device that implements
a “thermostat type” generic or specific device class. Figure 3-8 shows an example ZWaveThermostat’s
property sheet.

Figure 3-8 Example ZWaveThermostat component, property sheet

ZWaveDevice
A ZWaveDevice component is dynamically created for any discovered slave device using a generic or
specific device class that is not a “thermostat type”. For example, a “switch binary”, “switch multilevel”
(dimmer), “sensor multilevel”, and so on. Figure 3-9 shows an example ZWaveDevice’s property sheet.
NiagaraAX-3.5

Z-Wave Driver Guide
3-14

Chapter 3 – NiagaraAX Z-Wave Concepts About the ZWaveDevice
March 24, 2015 ZWaveDevice common properties

Figure 3-9 Example ZWaveDevice component, property sheet

Both Z-Wave device types (ZWaveThermostat, ZWaveDevice) have the same common collection of slots
(properties). Depending on the Z-Wave command classes each device type supports, each type is
modeled similarly in the NiagaraAX station by child components and proxy points.

ZWaveDevice common properties
Common properties (or slots) on any ZWaveDevice appear near the top of its property sheet, as shown
in Figure 3-10.

Figure 3-10 ZWaveDevice property sheet, showing properties and slots common among all ZWaveDevices

These common Z-Wave device properties or slots are described as follows:
• Status, Enabled, Fault Cause, Health, Alarm Source Info

These properties operate the same as for a device object in most drivers. see “Common device com-
ponents” in the Drivers Guide for general information on these properties.

• Max Fail Until Device Down
Specifies how many unanswered device pings must occur before the driver marks this device with a
“down” status, where the default value is 2.

• Device Profile
Used to define and display the “Device Profile” for this specific type of device. See “About Device Pro-
files” on page 3-32.

• Node Id
(read-only) The unique Z-Wave node address of the device. It is originally assigned by a Z-Wave pri-
mary controller when a Z-Wave device is installed / added to a network.
NiagaraAX-3.5

Z-Wave Driver Guide
3-15

About the ZWaveDevice Chapter 3 – NiagaraAX Z-Wave Concepts
ZWaveDevice common properties March 24, 2015

• Read Device On Event Update

This property is visible only if this device is a non-listening (battery-powered) device, and has a default
value of false. It controls whether or not the driver attempts to read all Z-Wave device points and
components upon receiving an association event message.
Note: If the device is a listening device, it always reads all Z-Wave device points and components on
an event message.
Some non-listening battery-powered devices stay awake long enough to read this data, and others
do not. If you set this to true and the device does not stay awake long enough to read all the data, it
could cause several seconds of communications delay due to communications timeouts.

• Node Info
Container slot that lists the Z-Wave device type and supported command classes. See “Node Info”.

• Points
A standard Points device extension (container) for data items in this Z-Wave device that need to be
polled for data. See “Points”.

Node Info
Among ZWaveDevice common properties, Node Info (Node Information) is a container slot for all
node information returned from any Z-Wave device. Figure 3-11 shows an example.

Figure 3-11 Node Info expanded in ZWaveDevice property sheet

Expand Node Info to see all its read-only properties, including:
• Is Listening — Indicates if this node is always listening or not. Typically this is false for any battery-

powered node that sleeps.
The driver does not attempt communications to a non-listening device that is asleep. If the device
also implements the WakeUp command class, it uses the Wake Up Notification message from the
device as an indication that the device is awake, and attempts to read all the device's data at that time.

• Optional Functionality — Indicates that this node supports other command classes in addition to
mandatory classes for its selected generic and specific device class.

• Sensor250ms — If true, indicates that this node is an FLiRS (Frequently Listening Routing Slave)
device with a wakeup interval of 250ms.

• Sensor1000ms — If true, indicates that this node is an FLiRS (Frequently Listening Routing Slave)
device with a wakeup interval of 1000ms.

• Basic Device Class — Identifies the Z-Wave library used by this device. Possible values include:
Portable Controller, Static Controller, Slave, and Routing Slave.

• Generic Device Class — Identifies the main functionality of this device. For Generic Device Class
descriptions, refer to document 2 in “Z-Wave reference documents” on page 1-1.
NiagaraAX-3.5

Z-Wave Driver Guide
3-16

Chapter 3 – NiagaraAX Z-Wave Concepts About the ZWaveDevice
March 24, 2015 ZWaveDevice common properties

• Specific Device Class — Identifies a specific variant of the Generic Device Class that applies to this

device. Again, refer to document 2 in “Z-Wave reference documents” on page 1-1 for descriptions.
• Command Classes Raw — A byte array of identifiers for all command classes supported by this de-

vice, as received from the device.
• Cmd Classes — Container for all Z-Wave command classes supported by the device, where each

command class is represented as an expandable node with properties.
Command classes are listed using the format:

xNN CommandClassType, ver=x, count=y

where NN is the code for that command class, x is version number, and y is number of instances.
For example:
 x31 Sensor Multilevel, ver=1, count=3

Expanding any listed command class simply shows (again) its Cmd Class Type, Version, and Instanc-
es (count) as separate properties.

• Unsupported Cmd Classes — Container for all Z-Wave command classes supported by the device,
but not supported by the driver. Unsupported command classes are listed using the format:
 xNN CommandClassType

This container should be empty if all the device’s command classes are supported by the driver.
A “Create Command Classes” action is also avaiable on NodeInformation (Node Info). This command
automatically occurs upon any device discovery. This creates all the dynamic components under the
ZWaveDevice and in its Points container.

Points
Among ZWaveDevice common properties, Points (ZWavePointDevExt) is a container slot for all
dynamically added control points (Z-Wave proxy points) for that device. Proxy points correspond to any
Z-Wave command classes best modeled as control points, for real-time monitoring and control.

Figure 3-12 Points of a ZWaveDevice, in the default ZWave Point Manager view of the device extension

Some Z-Wave command classes result in (one or more) dynamically created proxy points, while others
result (instead) with dynamically created “child components” directly under the ZWaveDevice parent.
See the section “ZWaveDevice child components” for more information.
A few Z-Wave command classes result in both ZWaveDevice child components and proxy points. For a
complete listing of how Z-Wave component modeling occurs for Z-Wave command classes, arranged
alphabetically by Z-Wave command class name, see “Z-Wave command classes supported” on page 1-2.
For more details on Z-Wave proxy points, “About ZWave proxy points” on page 3-21.
NiagaraAX-3.5

Z-Wave Driver Guide
3-17

About the ZWaveDevice Chapter 3 – NiagaraAX Z-Wave Concepts
ZWaveDevice child components March 24, 2015

ZWaveDevice child components
Depending on the Z-Wave command classes supported, a ZWaveDevice has some number of additional
dynamic “child components”. By default, these components are seen directly under the device’s Points
extension when expanding the device in the Nav tree, and also in the device’s property sheet (Figure 3-13).

Figure 3-13 Example dynamic child components under a ZWaveDevice

Child components have default names such as “Version”, “Naming”, “manufacturerSpecific”,
and so on. Often child components have right-click actions to read or write data to/from the Z-Wave
device. Actions on these components are available in the Nav tree or in the property sheet.

Figure 3-14 Actions on child components available in Nav tree or ZWaveDevice’s property sheet

In some cases, a few actions are “promoted” to be actions on the parent ZWaveDevice component. For
example, two “Assign” actions for the “Naming” child component (Node Name, Node Location) are
available on the ZWaveDevice. For related details, see “ZWaveDevice actions”.
Child component types for ZWaveDevice objects are listed in the following section.

Child component types
Child components are immediately recognizable by their default name, which corresponds to a particular
Z-Wave command class. Table 3-1 alphabetically lists current types of child components for ZWaveDe-
vices by default name, and provides a link to a reference topic for each type.

child
components
NiagaraAX-3.5

Z-Wave Driver Guide
3-18

Chapter 3 – NiagaraAX Z-Wave Concepts About the ZWaveDevice
March 24, 2015 ZWaveDevice actions

Table 3-1 Alphabetical listing (by default name) of possible ZWaveDevice child components

ZWaveDevice actions
A ZWaveDevice has several actions, with an example shown in Figure 3-15 below.

Figure 3-15 Example actions on ZWaveDevice component

The total number of actions can vary by which Z-Wave command classes supported by the modeled
device. Typical ZWaveDevice actions are described as follows:
• Ping

Forces a ping message to be sent to the Z-Wave device.
• Request Node Info

Forces a “Node Information” request to the device, to retrieve its supported device class and com-
mand class data (stored in the ZWaveDevice’s “Node Info” slot). See “Node Info” on page 3-16.

• Request Protocol Info
Forces a “Node Protocol Information” request to the device, to retrieve its “Is Listening”, “Optional
Functionality”, “Sensor250ms”, and “Sensor1000ms” flags (stored in the ZWaveDevice's “Node Info”
slot). See “Node Info” on page 3-16.

Component under ZWaveDevice (reference information) Z-Wave Command Class
applicationStatus (CcApplicationStatus on page 5-37) Application Status
associations (ZWaveAssociationDeviceExt on page 5-42) Association
associations (ZWaveAssociationDeviceExt on page 5-42) Multi Channel Association
basicTariffInfo (CcBasicTariffInfo on page 5-38) Basic Tariff Information
clock (CcClock on page 5-38) Clock
configuration (ZWaveConfigDeviceExt on page 5-43) Configuration
hrvControl (CcHrvControl on page 5-38) HRV Control
hrvStatus (CcHrvStatus on page 5-39) HRV Status
indicator (CcIndicator on page 5-40) Indicator
manufacturerSpecific (ZWaveManufacturerSpecific on page 5-43) Manufacturer Specific
multiInstance (CcMultiInstance on page 5-40) Multi Instance or Multi Channel
Naming (ZWaveNames on page 5-44) Node Name & Location
protection (CcProtection on page 5-40) Protection
Scenes (ZWaveSceneNetworkExt on page 5-45) Scene Activation
switchAll (CcSwitchAll on page 5-41) All Switch
time (CcTime on page 5-41). Time
users (ZWaveUserDeviceExt on page 5-45) User Code
version (ZWaveVersion on page 5-46). Version
wakeUp (CcWakeUp on page 5-41) Wake Up
NiagaraAX-3.5

Z-Wave Driver Guide
3-19

ZWave Point Manager Chapter 3 – NiagaraAX Z-Wave Concepts
ZWaveDevice actions March 24, 2015

• Assign Node Name

(If device supports “Naming” command class). Produces a popup Assign Node Name dialog, in
which you can type in a text string for node name, which is written to the device. See ZWaveNames
on page 5-44 for reference details.

• Assign Node Location
(If device supports “Naming” command class). Produces a popup Assign Node Location dia-
log, in which you can type in a text string for node location, which is written to the device.

• Read Version
(If device supports “Version” command class). Forces a “Version” request to the device, with data put
in the ZWaveDevice’s “Version” slot. See “zwave-ZWaveVersion” on page 5-46 for reference details.

• Save Device Profile
Saves a “Z-Wave device profile” (.info) file for this type of device to the station’s file system, provid-
ing one does not already exist. See “About Device Profiles” on page 3-32.

• Force Save Device Profile
Forces saving a “Z-Wave device profile” (.info) file for this type of device to the station’s file system,
overwriting any existing file. See “About Device Profiles” on page 3-32.

• Load Device Profile
Loads any matching “Z-Wave device profile” (.info) file from the station’s file system into this device.

ZWave Point Manager
The ZWave Point Manager (Figure 3-16) is the default view for the “Points” device extension for
any ZWaveDevice, and is similar to other point managers (with differences noted below). See “About the
Point Manager” in the Drivers Guide for general information.

Note: The ZWave Point Manager is unique from most Point Managers because there are no “add”, “new”, or
“discover” buttons—all proxy points are added automatically (dynamically) as a result of “replication”
from the primary controller, or (if station is an SIS or SUC), whenever the parent ZWaveDevice is dynam-
ically added. Only an Edit button is available in this view.

Figure 3-16 ZWave Point Manager is default view for Points under a ZWaveDevice

From this view you can review and edit ZWave proxy points. See the next section “Editing ZWave proxy
points” for details.
Additional proxy point details are in “About ZWave proxy points” on page 3-21, including a complete
listing of possible points, by default name. See “ZWave proxy points by default name” on page 3-23.
NiagaraAX-3.5

Z-Wave Driver Guide
3-20

Chapter 3 – NiagaraAX Z-Wave Concepts About ZWave proxy points
March 24, 2015 Editing ZWave proxy points

Editing ZWave proxy points
Below is an example Edit dialog for a ZWave proxy point. To edit a point, double-click it in the ZWave
Point Manager, or select one or more points and click the Edit button.

Figure 3-17 Edit dialog for ZWave proxy point

Change values as needed, using the guidelines below.
• Name

If desired, type in to replace the default Z-Wave proxy point name, where each name must be unique
in the parent container for the proxy point.

• Type
Cannot edit (type is ZWaveProxy or ZWaveThermostatSetPointProxy).

• Enabled
Accept the default “true” (if set to “false” point status is set to disabled, and the item is not polled).

• Facets
Edit as needed for proper unit display and decimal handling of the selected item. If a numeric writ-
able, a min or max (other than defaults -inf and +inf) may be desired to limit what can be entered
from an override or set action.
Note: ZWave proxy points typically have an appropriate unit preselected, based on command class.

• Tuning Policy Name
Accept the standard “Default Policy”, or if additional tuning policies have been added to the
ZWaveNetwork, select another tuning policy if needed. If this is point is in a FLiRS device, (Fre-
quently Listening Routing Slave) the tuning policy will set to “flirsPolicy”by default.

• Device Facets
Accept defaults—usage is not applicable in ZWave driver.

• Conversion
Typically, the “Default” conversion is the only useful conversion selection.
In the case of a Z-Wave proxy point based on a BooleanPoint or BooleanWritable, where you need
to “flip” the output logic, you can select the conversion type Reverse Polarity.

About ZWave proxy points
ZWave proxy points are similar to other driver’s proxy points, as “point-level” components in the
NiagaraAX architecture. See “About proxy points” in the Drivers Guide for general information.
The following sections provide driver-specific details about ZWave proxy points:
• ZWaveProxyExt properties
• ZWave proxy point actions
• ZWave proxy points by default name

ZWaveProxyExt properties
ZWave proxy points typically use a ZWaveProxyExt—except for setpoints under a ZWaveThermostat
device, which use a ZWaveThermostatSetPointProxyExt. Both proxy extension types share the
same set of properties. Each is a proxy for one piece of data of interest in a Z-Wave device. This single
piece of data is determined by the corresponding Z-Wave command class, and results in a descriptive
default name for the parent Z-Wave proxy point.
Figure 3-18 shows an example ZWaveProxyExt expanded in the property sheet of ZWave proxy point.
NiagaraAX-3.5

Z-Wave Driver Guide
3-21

About ZWave proxy points Chapter 3 – NiagaraAX Z-Wave Concepts
ZWave proxy point actions March 24, 2015

Figure 3-18 ZWaveProxyExt example expanded in property sheet

In addition to typical ProxyExt properties, the proxy extension for any ZWave proxy point includes these
Z-Wave-specific properties:
• Instance

Used for any point, the Instance number from 1 to n. Typically this is 1 unless the device’s associated
Z-Wave command class has a “count” more than 1. For related details, see the section on “Node Info”
on page 3-16. Also refer to the target Z-Wave device’s vendor documentation for application details.

• Rewrite Emergency Cmds
Used only when the parent point is a writable point, with a default value of false. Setting this to true
causes the driver to rewrite the Write Value when the following are both true:
• the Read Value does not match the Write Value, while
• the active level is Level 1 or Level 2.

• Age
Displays the current age of this value. This value updates only when the point is subscribed and the
poll method is executed. Its main purpose is in support of non-listening (battery-powered) devices
to provide time information about the data.

• Next Wake Up In
Used only for points in non-listening devices that implement the WakeUp command class, it dis-
plays count down time until this value should update from the WakeUp command class. This value
only updates when the point is subscribed and the poll method is executed.

ZWave proxy point actions
Unlike proxy points in some other drivers, no “special” actions are available on ZWave proxy points apart
from the usual actions on writable types (NumericWritable, BooleanWritable, EnumWritable). A few
exceptions are possible for a few ZWave proxy points (Alarm Sensor related ones, Binary Toggle).
If needed, you can go to the slot sheet of these proxy points to edit display names for actions. Or, edit
config flags for actions to hide or change access (permission) level.
Note that the proxy extension (ZWaveProxyExt or ZWaveThermostatSetPointProxyExt) on any ZWave
proxy point has two actions: Set On, and Set Off.

Note: It is recommended that you do not expose or use these proxy extension actions (Set On, Set Off) in any user
interface to the system. Unintended control is possible to writable points, with other issues possible.
NiagaraAX-3.5

Z-Wave Driver Guide
3-22

Chapter 3 – NiagaraAX Z-Wave Concepts About ZWave proxy points
March 24, 2015 ZWave proxy points by default name

ZWave proxy points by default name
ZWave proxy points are recognizable by their default name, which corresponds to a particular Z-Wave
command class. Table 3-2 alphabetically lists current proxy points for ZWaveDevices by default name.

Table 3-2 Alphabetical listing (by default name) of possible ZWaveDevice proxy points

Proxy point default name Z-Wave “Command Class” and reference link
alarm “Alarm Sensor” on page 3-24
autoChangeoverSetpoint “Thermostat Setpoint” on page 3-26
awayHeatSetpoint “Thermostat Setpoint” on page 3-26
batteryLevel “Battery” on page 3-24
batterySensor “Battery Sensor” on page 3-24
bypass “HRV Control” (CcHrvControl on page 5-38)
co2Alarm “Alarm Sensor” on page 3-24
coAlarm “Alarm Sensor” on page 3-24
coolSetpoint “Thermostat Setpoint” on page 3-26
coolSetupSetpoint “Thermostat Setpoint” on page 3-26
dischargeTemp “HRV Status” (CcHrvStatus on page 5-39)
dryAirSetpoint “Thermostat Setpoint” on page 3-26
e2rateConsumption “Basic Tariff Information” (CcBasicTariffInfo on page 5-38)
exhaustTemp “HRV Status” (CcHrvStatus on page 5-39)
fanMode “Thermostat Fan Mode” on page 3-25
fanState “Thermostat Fan State” on page 3-25
heatAlarm “Alarm Sensor” on page 3-24
heatSetbackSetpoint “Thermostat Setpoint” on page 3-26
heatSetpoint “Thermostat Setpoint” on page 3-26
hrvControl “HRV Control” (CcHrvControl on page 5-38)
instantEnergy “Energy Production” on page 3-24
lock “Lock” on page 3-25
lowBattery “Battery” on page 3-24
meterValue “Meter” on page 3-25
mode “Thermostat Mode” on page 3-25
mtpWindowCovering “Move To Position Window Covering” on page 3-25
multilevelSensor “Multilevel Sensor” on page 3-25
outsideTemp “HRV Status” (CcHrvStatus on page 5-39)
pulseCount “Pulse Meter” on page 3-25
rateConsumption “Basic Tariff Information” (CcBasicTariffInfo on page 5-38)
remainingFilterLife “HRV Status” (CcHrvStatus on page 5-39)
roomTemp “HRV Status” (CcHrvStatus on page 5-39)
roomRelHum “HRV Status” (CcHrvStatus on page 5-39)
sensorBattery “Battery Sensor” on page 3-24
smokeAlarm “Alarm Sensor” on page 3-24
state “Thermostat Operating State” on page 3-26
supplyTemp “HRV Status” (CcHrvStatus on page 5-39)
switch “Binary Switch” on page 3-24
switch “Multilevel Switch” on page 3-25
switchToggle “Binary Toggle” on page 3-24
todaysEnergy “Energy Production” on page 3-24
totalEnergy “Energy Production” on page 3-24
totalTime “Energy Production” on page 3-24
NiagaraAX-3.5

Z-Wave Driver Guide
3-23

About ZWave proxy points Chapter 3 – NiagaraAX Z-Wave Concepts
ZWave proxy points by default name March 24, 2015

Alarm Sensor
A device that supports the Alarm Sensor command class supports one or more sensor types. For each
supported sensor type, a BooleanPoint is created in the device’s Points container. Table 3-3 lists
different Z-Wave alarm sensor types to the default names of corresponding BooleanPoints.

Note: Alarm extensions are not added (by default) to these BooleanPoints. You must add an alarm extension to
any point that you want integrated into the station’s NiagaraAX alarming subsystem.

Table 3-3 Z-Wave sensor type to default name of ZWave proxy BooleanPoint for alarming

Note: A “silenceAlarm” action is available on any of the points above if the device supports the Alarm Silence
command class.

Alarm Silence
A device that supports the Alarm Sensor command class may also support the Alarm Silence
command class. For each alarm sensor BooleanPoint added by the Alarm Sensor command class, this
command class adds a “silenceAlarm” action. When invoked, it sends a message to the device to
silence the device’s local sounding of an alarm.

Battery
If the Battery command class is supported, two points are created in the device’s Points (Table 3-4).

Table 3-4 Battery default name of ZWave proxy point with description and point type

Battery Sensor
If the Battery Sensor command class is supported, a BooleanPoint with the default name of
“sensorBattery” is added to Points. This point indicates if the sensor has detected an event.

Binary Switch
If the Binary Switch command class is supported, a BooleanWritable with the default name of
“switch” is added to Points. This point can be used to both control and indicate the current state of
the switch.

Binary Toggle
If the Binary Toggle command class is supported, a BooleanPoint with the default name of
“switchToggle” is added to Points. A dynamic action named “Toggle” is added to this point. This
proxy point indicates the current state of the switch, and its action is used to command the device to
toggle the current state of the switch.

Energy Production
A device that supports the Energy Production command class retrieves energy production data
from an energy production device (e.g. generator). If the device supports this command class, four
NumericPoints are added to Points, as described in Table 3-5.

ventilationRate “HRV Control” (CcHrvControl on page 5-38)
waterLeakAlarm “Alarm Sensor” on page 3-24

Proxy point default name Z-Wave “Command Class” and reference link

Default Point Name Z-Wave Sensor Type Point type, note

alarm General Purpose Alarm

BooleanPoint

smokeAlarm Smoke Alarm
coAlarm CO Alarm
co2Alarm CO2 Alarm
heatAlarm Heat Alarm
waterLeakAlarm Water Leak Alarm

Default Point Name Description Point type

batteryLevel Percentage of full battery NumericPoint
lowBattery Low battery warning BooleanPoint
NiagaraAX-3.5

Z-Wave Driver Guide
3-24

Chapter 3 – NiagaraAX Z-Wave Concepts About ZWave proxy points
March 24, 2015 ZWave proxy points by default name

Table 3-5 Energy Production default ZWave proxy point names to parameters, units, point types

Hail
A device that supports the Hail command class fires the “hail” topic of its corresponding
ZWaveDevice component whenever a Z-Wave “Hail” message is received from another device. Usage of
the Hail command class is application-specific.

Lock
If the Lock command class is supported, a BooleanWritable with the default name of “lock” is added to
Points. This point can be used to both control and indicate the current lock state of a lockable device.

Meter
If the Meter command class is supported, a NumericPoint with the default name of “meterValue” is
added to Points. This point reads the accumulated values from an electric, gas, or water meter. The
point’s units are automatically set to match the units reported by the Z-Wave device.

Move To Position Window Covering
If the Move To Position Window Covering command class is supported, a NumericWritable
with the default name of “mtpWindowCovering” is added to Points. This point can indicate the
current position of the window covering, and can move the window covering to a given position.

Multilevel Sensor
If the Multilevel Sensor command class is supported, a NumericPoint with the default name of
“multiLevelSensor” is added to Points. This point indicates the current value of the multilevel
sensor, in the units reported by the Z-Wave device.

Multilevel Switch
If the Multilevel Switch command class is supported, a NumericWritable with the default name of
“switch” is added to Points. This point indicates the current value of the multilevel switch, in the
units reported by the Z-Wave device, and can be commanded to change the value.

Pulse Meter
If the Pulse Meter command class is supported, a NumericPoint with the default name of
“pulseCount” is added to Points. This point indicates the current accumulated pulse counts
reported by a pulse counting utility meter device.

Thermostat Fan Mode
If the Thermostat Fan Mode command class is supported, an EnumWritable with the default name
of “fanMode” is added to Points. This point monitors, and can be used to control, the current fan
mode of the HVAC system.
The driver queries the Z-Wave device to determine the fan modes supported. If the fan is single-speed,
mode choices are “Auto” and “On”. If a two-speed fan, mode choices are “auto”, “onLow”, “autoHigh”, and
“onHigh”.

Thermostat Fan State
If the Thermostat Fan State command class is supported, an EnumPoint with the default name of
“fanState” is added to Points. This point monitors the current fan state of the HVAC system. Valid
fan states include “idle”, “on”, and “onHigh”.

Thermostat Mode
If the Thermostat Mode command class is supported, an EnumWritable with the default name of
“mode” is added to Points. This point monitors, and can be used to control, the thermostat operation
mode of the HVAC system.
The driver queries the Z-Wave device to determine the thermostat modes supported. Supported modes
are added as enumerations to the EnumWritable, with possible enum tags shown in Table 3-6.

Default Point Name Production Parameter Units Point type

instantEnergy Instant energy production Watts

NumericPoint
totalEnergy Total energy production Watt-Hours
todaysEnergy Energy production today Watt-Hours
totalTime Total production time Hours or Seconds
NiagaraAX-3.5

Z-Wave Driver Guide
3-25

About ZWave proxy points Chapter 3 – NiagaraAX Z-Wave Concepts
ZWave proxy points by default name March 24, 2015

Table 3-6 Possible Enum Tag values and descriptions for Thermostat “mode” ZWave proxy point

Thermostat Operating State
If the Thermostat Operating State command class is supported, an EnumPoint with the default
name of “state” is added to Points. This point monitors the HVAC system’s operating state.
Possible HVAC system operating states are shown in Table 3-7.

Table 3-7 Possible operating states for Thermostat “state” ZWave proxy point

Thermostat Setpoint
If the Thermostat Setpoint command class is supported, one or more NumericWritable points are
added to Points, for setpoint handling. These points are used to monitor and control the setpoints
supported by the device. Table 3-8 provides a list of possible proxy points that may be added.

Enum Tag Description

off Off — System is off. No heating or cooling will come on.
heat Heat — Only heating will occur.
cool Cool — Only cooling will occur.
auto Auto — Heating or cooling will come on according, to the heating and cooling set-

points. The system automatically switches between heating and cooling when the
temperature exceeds (or drops below) the setpoints.

aux Auxiliary/Emergency Heat — A heat pump, especially an exchange type, is not effi-
cient when outside temperature is below 35 degrees Fahrenheit (close to 0 degrees
Celsius). Thus, the thermostat may be put into an “Aux heat mode” simply to use a
more efficient secondary heat source, when there are no failures with the heat pump
or its compressor.

resume Resume — The system resumes from last active mode.
fan Fan Only — Only cycle fan to circulate air.
furnace Furnace — Only cycle fan to circulate air.
dry Dry Air — The system cycles cooling in relation to the room and setpoint tempera-

tures, in order to remove ambient moisture. (Dehumidification)
moist Moist Air — Humidification.
autochange Auto Changeover — Heating or cooling comes on according to the auto changeover

setpoint.
heatEnergySave Energy Save Heat — Energy Save Mode Heating will occur (usually lower than nor-

mal setpoint).
coolEnergySave Energy Save Cool — Energy Save Mode Cooling will occur (usually higher than nor-

mal setpoint).
away AWAY — Special heating mode, to prevent water from freezing in forced water sys-

tems.

Enum Tag Description

idle System is idle.
heat Heating.
cool Cooling.
fan Fan Only.
heatPend Short cycle prevention feature used in heat pump applications to protect the com-

pressor.
coolPend Short cycle prevention feature used in heat pump applications to protect the com-

pressor.
vend Vent / Economizer.
NiagaraAX-3.5

Z-Wave Driver Guide
3-26

Chapter 3 – NiagaraAX Z-Wave Concepts About Z-Wave Scenes
March 24, 2015 Creating and setting up scenes

Table 3-8 Default ZWave proxy point names associated with Thermostat Setpoints

Typically, a device does not have all 9 setpoints.

About Z-Wave Scenes
Scenes are a pre-set combination of actions that occur at the touch of a single button. A scene can be any
combination of Z-Wave device control settings. For example, providing that the associated Z-Wave
devices support scenes, you can create a scene for sunset that closes the blinds, turns on inside lights to
a pre-set level, and activates an outdoor motion sensor. However, scene support is most common
amongst Z-Wave lighting control devices.
• Creating and setting up scenes
• Activating scenes

Creating and setting up scenes
In the NiagaraAX station, scenes are modeled at the network level using a “Scenes” network extension
on the ZWaveNetwork. A special Workbench view on Scenes, as well as on each of the “Network-
Scene” (scene) children, provide an interface to quickly define a scene.
• To create a scene
• To setup a scene

To create a scene

Step 1 Double-click the Scenes network extension under the ZWaveNetwork to access the Network
Scenes Ext Manager (Figure 3-19). Or access this view using the view selector for Scenes.

Figure 3-19 Network Scene Ext Manager

The Network Scene Ext Manager lists any existing scenes, if applicable.
Step 2 Click the New button in this manager view.

A New popup dialog opens, for type “Z Wave Network Scene”, with “Number to Add” (Figure 3-20).
Type in the number to add, or just click OK to add one.

Default Point Name Setpoint Point type

heatSetpoint Heating

NumericWritable

coolSetpoint Cooling
furnaceSetpoint Furnace
dryAirSetpoint Dry Air
moistAirSetpoint Moist Air
autoChangeoverSetpoint Auto Changeover
heatSetbackSetpoint Energy Save Heating
coolSetupSetpoint Energy Save Cooling
awayHeatSetpoint Away Heating
NiagaraAX-3.5

Z-Wave Driver Guide
3-27

About Z-Wave Scenes Chapter 3 – NiagaraAX Z-Wave Concepts
Creating and setting up scenes March 24, 2015

Figure 3-20 Popup dialogs when adding new scene in Network Scene Ext Manager

In the second New dialog, type in a name for each scene, replacing “ZWaveNetworkScene”, and click OK.
In this example, the new scene is named “Dinner”.
This new scene (ZWaveNetworkScene component) is now added, but not yet defined.

Note: A numerical Z-Wave “scene ID” is automatically assigned, but not yet visible unless you go to its property
sheet. Scene IDs must be unique integers, starting with 1.

To setup a scene

Step 1 Double-click the scene added (for example, “Dinner”), in either the Network Scenes Ext
Manager, or in the Nav tree, with the parent Scenes extension expanded.
The view changes to the Network Scene Manager for that scene (Figure 3-21).

Figure 3-21 Network Scene Ext Manager

For a newly-added scene, the Database pane will be empty, as shown above.
Step 2 Click Discover.

The view splits into two-pane Learn mode: Discovered top and Database lower. A discovery job
launches to find devices that support scenes—and if this scene ID is already specified in each (Figure 3-22).
NiagaraAX-3.5

Z-Wave Driver Guide
3-28

Chapter 3 – NiagaraAX Z-Wave Concepts About Z-Wave Scenes
March 24, 2015 Creating and setting up scenes

Figure 3-22 Following scene Discover in the Network Scene Manager view, showing available devices

In the Figure 3-22 example above, following a discovery, scene “Dinner” shows 5 available nodes that
support scenes. None are yet specified in this scene.

Step 3 In the Discovered pane, double-click a node to add it. Or, hold Ctrl while clicking multiple nodes and
then click Add.
A popup Add dialog for the node (or nodes) appears, as shown in Figure 3-23.

Figure 3-23 Add dialog for specifying node in a Z-Wave scene

Step 4 For each node in the Add dialog, enter:
• Dimming Duration

Applies if a dimmer node only. Specifies the “ramp time” from the current dim level to the final spec-
ified Level for the scene. (Ignored if a non-dimmer node—the Level is applied immediately).

• Level
Enter any value from 0 to 100.
• If a dimmer node, this specifies the final dim level at the end of the Dimming Duration.
• If a binary node, a “0” value means Off, any non-zero value (1 - 100) means On.

And click OK to enter in the system. Figure 3-23 shows a scene that includes 3 nodes.
NiagaraAX-3.5

Z-Wave Driver Guide
3-29

About Z-Wave Associations Chapter 3 – NiagaraAX Z-Wave Concepts
Activating scenes March 24, 2015

Figure 3-24 Network Scene Manager view of scene that affects 3 nodes

The scene can now be activated, or if necessary, edited again to modify. See “Activating scenes”.

Activating scenes
Scenes can be activated a number of different ways:
• While in the Network Scene Manager view of any scene, click the Activate button.
• While in the Network Scene Ext Manager view (of the Scenes extension), click to select one

or more scenes, then click the Activate button.
• In the property sheet of the ZWaveNetwork expand Scenes, then right-click any child scene

(ZWaveNetworkScene component), and select Actions > Activate.
• In the Nav tree with Scenes expanded, right-click any child scene (ZWaveNetworkScene compo-

nent), and select Actions > Activate, as shown in Figure 3-25.

Figure 3-25 Right-click scene in Nav tree or in property sheet to activate

Also see “About Z-Wave Scenes” on page 3-27.

About Z-Wave Associations
Z-Wave associations are application-level connections between Z-Wave nodes. Devices that support
associations implement the Association command class. In the NiagaraAX station, associations
between devices are specified using ZWaveAssociationGroup (groupn) component children of the
ZWaveAssociationDeviceExt (associations) “child component” of ZWaveDevice components.
However, the easiest way to create and view Z-Wave associations is via the wire sheet of view of the
ZWaveNetwork. Here, associations appear as “green” colored links between devices on the wire sheet.
Association types, along with wire sheet examples, are provided in the following sections:
• Single Instance Associations
• Multi Instance Associations
• Multi Channel Associations

Single Instance Associations
Any device that supports Z-Wave associations has an integer “assocIn” slot exposed on its corresponding
ZWaveDevice component. The “assocIn” slot is the target of an association link.
For each association group a device supports, it has an integer slot “groupn”, where n is the group number.
Any “groupn” slot is a source of an association link.
A ZWaveDevice’s component glyph (shape) shows “assocIn” and “groupn” slots, as shown in Figure 3-26.
NiagaraAX-3.5

Z-Wave Driver Guide
3-30

Chapter 3 – NiagaraAX Z-Wave Concepts About Z-Wave Associations
March 24, 2015 Multi Instance Associations

Figure 3-26 ZWaveDevice shapes on wire sheet of ZWaveNetwork, showing “assocIn” and “groupn” slots

In Figure 3-26, there is dimmer device (node 8, left) and a dimmer remote device (node 11, right). A
dimmer remote is similar to a dimmer device, except that it does not support a direct connection to a
lighting load.
In this application, the need is for the dimmer remote node (node 11) to be able to control the light that
is wired to the “1stFloor_Dimmer_8” (node 8) device. To provide this, you simply link from node 11’s
“group1” (source) slot to the node8’s “assocIn” (target) slot, as shown below in Figure 3-27.

Figure 3-27 Association made by linking from groupn source to assocIn target

The link in Figure 3-27 causes an association to be made from node 11 to node 8. When node 11’s dimmer
switch is activated locally, a Z-Wave message is sent directly to node 8, causing the light wired to node 8
to change to the level set by node 11.
Note if the light is controlled directly at node 8, the dim level displayed at node 11 does not change.
However, it is preferred that the current status of the light connected to node 8 to also be indicated at
node 11. This requires adding another link from node8’s “group1” slot to node 11’s “assocIn” slot
(Figure 3-28).

Figure 3-28 Association links made in both directions between two nodes

Multi Instance Associations
If a device supports Multi Instance associations, it is similar to the single instance association. However,
instead of the single “assocIn” slot, the device also has multiple “assocIn_n” slots, where n is the instance
number. Each of these “assocIn_n” slots are possible link targets.
See “Single Instance Associations” on page 3-30.
NiagaraAX-3.5

Z-Wave Driver Guide
3-31

About Device Profiles Chapter 3 – NiagaraAX Z-Wave Concepts
Multi Channel Associations March 24, 2015

Multi Channel Associations
If a device supports Multi Channel associations, the association is created to a “end point” in a multi
channel device. This is similar to the single instance association, only instead of a single “assocIn” slot,
the device also has multiple “assocInEpn” slots, where n is the end point number.
Figure 3-29 shows an example of Multi Channel association links.

Figure 3-29 Example Multi Channel association links

The Figure 3-29 example is from an application that has two nodes, node_2 (left) and node_3 (right).
Each node is a 2-gang light switch, that is, each node can control two separate lights. In this case, lights
are only wired to node_2.
The need is for switch 1 on either node to control light 1, and for switch 2 on either node to control light 2.

Note: In the Figure 3-29 example, devices used were Astral LSM12s devices. When the link to associate switch 1
to light 1 was originally added, it was added as a link from “group1” to “assocInEp1”.
However, the device reported back the link as a single instance link to the “assocIn” slot—and as such, the
link automatically “moved itself ” to that destination slot!
At the time of this document, it is not known if this is “typical behavior” for end point 1 associations on
multi channel devices.

About Device Profiles
Device profiles are used to map generic names for Z-Wave proxy points and configuration properties to
specific names for a specific Z-Wave device. A device profile can also be used to meet a specific device
“contract” or “profile”. You can use Workbench as a tool to create these device profiles.
The device profile is an ASCII text file that is named using the information from the manufacturerId,
productTypeId, and productId properties from the Z-Wave device. The file contains the device profile
name, and a “pointNameMap”. The pointNameMap is the definition of a Baja NameMap for the
ZWaveDevice’s points device extension, providing application-specific display names for specific points.
A simple example is for a Z-Wave device that is used to control a window covering. Such a device typically
implements a Z-Wave Multilevel Switch command class, used to control the position of the
window covering. However, there may not be anything in the Z-Wave device that will indicate that it is a
window covering application.
Without any device profile, when the device is discovered, a NumericWritable point is created for the
Multilevel Switch command class. This point is named “switch”.
Using Workbench, from the slot sheet of the device’s Points extension, you can set the display name for
the “switch” point to “percentOpen”. You could also set the ZWaveDevice’s “Device Profile” property
value to “WindowCovering” (note the “Device Profile” property is near the top of the property sheet for
any ZWaveDevice component).
After doing this, if you invoked the “Save Device Profile” action on this ZWaveDevice, a file named
“x65_x1_x2.info” would be generated that contains the following:

deviceProfile=WindowCovering
pointsNameMap{switch=percentOpen;}

Note: Device profile files are saved in the station’s file space in a !Files/zwaveDevTemplates directory.
Later, during a discovery process, as ZWaveDevices are added to the station, the driver first looks for the
existence of a device profile file for a device in !Files/zwaveDevTemplates. If one is not found
there, the driver looks in the zwave.jar (driver) module, as a collection of device profiles are included
in the driver. If a device profile file is found, it initializes the “Device Profile” property of the ZWaveDevice
component, and sets display names in the “pointNameMap” of its Points (ZWavePointDeviceExt).
NiagaraAX-3.5

Z-Wave Driver Guide
3-32

4CHAPTER

ZWave Plugin Guides
Plugins provide views of components, and can be accessed many ways—for example, double-click a
component in the tree for its default view. In addition, you can right-click a component, and select from
its Views menu. For summary documentation on any view, select Help > On View (F1) from the
Workbench menu, or press F1 while the view is open.
Summary information is provided here about the different ZWave views.

ZWave Plugin Guides Summary
Summary information is provided on views specific to components in the zwave module, with views
listed in alphabetical order as follows:
• Network Scene Ext Manager
• Network Scene Manager
• ZWave Device Manager
• ZWave Point Manager

zwave-NetworkSceneExtManager
 The Network Scene Ext Manager is the default view of the Scenes extension under the
ZWaveNetwork (ZWaveSceneNetworkExt). Use this view to add Z-Wave scenes (ZWaveNetwork-

Scenes).
Note: To define a scene, after adding it (New), double-click it for its own Network Scene Manager view. For

detailed information, see “Creating and setting up scenes” on page 3-27.
Scenes appear listed in Network Scene Ext Manager view with the following default data columns:
• Name

Niagara name for the scene, as entered when adding a New scene or editing an existing scene.
• Scene Id

Z-Wave scene ID number (1 - 255), unique for each scene.
In addition, using the table options control, the following additional data columns are available:
• Path

Niagara station path of each scene component (ZWaveNetworkScene), relative to the root.

zwave-NetworkSceneManager
 The Network Scene Manager is the default view of any child scene under the Scenes
extension of the ZWaveNetwork. Scenes are defined combinations of actions across one or more

devices that can be “activated” by a single command. Use this view to add new nodes for a scene, edit any
node in the scene, and activate that scene.
Each entry (row) is a “NetworkSceneConfig” component (ZWaveNetworkSceneConfig) that specifies a
particular device (node) and action. For detailed information, see “Creating and setting up scenes” on
page 3-27.
By default, the Network Scene Manager has following data columns enabled:
• Name

Name of the “ZWaveNetworkSceneConfig” component.
• Scene Id
NiagaraAX-3.5

Z-Wave Driver Guide
4–33

zwave-ZWave Device Manager Chapter 4 – ZWave Plugin Guides
March 24, 2015

Z-Wave scene ID, integer 1 - 255 (should be the same for all NetworkSceneConfig components)

• Node Id
Z-Wave node ID for that device.

• Dimming Duration
Specified time it takes for the device to ramp to the specified Level.

• Level
Final dimming level, from 0 to 99 (or if a dimmer), or if a Boolean (binary) type, 0 for Off or 255 (or
any non-zero value) for On.

• Current Value
Current real-time value of the device.

• Fault Cause
Typically blank, unless a ZWaveNetworkSceneConfig component has a fault status.

In addition, using the table options control, the following additional data column is available:
• Path

Niagara station path of each “NetworkSceneConfig” component (ZWaveNetworkSceneConfig), rel-
ative to the root.

zwave-ZWave Device Manager
 The ZWave Device Manager is the default view of a ZWaveNetwork. Use the ZWave Device
Manager to review and access Z-Wave device components (ZWaveDevice and ZWaveThermostat)

in the station’s Z-Wave network.
Although this view features online “discovery” of devices, you typically use the “ReplicateReceive”
function to initially configure the network, working with the required Z-Wave “primary controller”. Then,
depending on whether the JACE will operate as an SUC or SIS (typical), or as a static secondary
controller, devices automatically populate the network as they are added one at a time, or all at once.
A number of buttons appear at the bottom of this view. For specific details, see “ZWave Device Manager”
on page 3-12.
Added ZWaveDevices appear in the view’s table. By default, the following columns appear in this view:
• Name

• If the ZWaveNetwork’s property “Use Node Names” is false (default), it shows the name of the
device-level component that represents the Z-Wave device.

• If the ZWaveNetwork’s property “Use Node Names” is true, instead of component name you
see a text string of “Node Location_Node Name_NodeId” for each device that supports the
the Node Name and Location command class. For example, “1st Floor_MotionFoyer_11”.
Any device not supporting this command class shows its “specificDeviceClass_NodeId”,
for example “thermostatGeneralV2_3” instead of component name.

• Type
Component type, currently either “Z Wave Thermostat” or “Z Wave Device”.

• Exts
Shows an icon for the Points de vice extension of a ZWaveDevice—double-click the icon for the
ZWave Points Manager.

• Node Id
Unique integer Z-Wave node ID (2 - 255) for the device.

• Specific Device Class
The “Specific Device Class” property of the device’s “Node Info”(NodeInformation) component.

• Device Profile
Displays the “Device Profile” for the device, if available. “About Device Profiles” on page 3-32.

• Node Name
The device’s “Node Name”, from the its “Naming” (ZWaveNames) component (if supported).

• Node Location
The device’s “Node Location”, from the its “Naming” (ZWaveNames) component (if supported).

• Health
The device’s current “health” and timestamp of last update.

In addition, using the table options control, the following additional data columns are available:
• Status

Current status of the ZWaveDevice component.
• Enabled

Whether the ZWaveDevice component is enabled (true) or disabled (false).
NiagaraAX-3.5

Z-Wave Driver Guide
4-34

Chapter 4 – ZWave Plugin Guides zwave-ZWave Point Manager
March 24, 2015

zwave-ZWave Point Manager

 Use the ZWave Point Manager to review and edit ZWave proxy points under the Points extension of
a selected Z-Wave device (ZWaveDevice or ZWaveThermostat). The ZWave Point Manager is the

default view on both these components. To view, double-click the Points extension, or right-click and
select Views > ZWave Point Manager.
For more details, see “ZWave Point Manager” on page 3-20.
By default, the following columns appear in this point manager:
• Name

Niagara name of the ZWave proxy point. Default names depend on the associated Z-Wave com-
mand class.

• Type
Niagara type of NiagaraAX control point used as the proxy point (e.g. NumericPoint, BooleanPoint,
EnumPoint, NumericWritable, EnumWritable, or BooleanWritable).

• Out
Current last polled value (out slot) of the proxy point, reflecting status and facets.

• Tuning Policy Name
Assigned tuning policy (Default Policy, or other if available and assigned).

In addition, using the table options control, the following additional data columns are available:
• Path

Station path of the proxy point, relative to the root.
• Enabled

Whether enabled (true, default) or disabled (false).
• Facets

Assigned units (AI or AO), trueText and falseText (BI or BO), or enum range (Enum).
• Device Facets

Typically reflect point facets, if not blank..
• Conversion

Niagara conversion type used, such as Default, Linear, or Reverse Polarity.
• Age

Time since last value update from the Z-Wave device.
• Next Wake Up In

If the parent device is battery-powered, this shows the timestamp of its next anticipated “wake up”.
• Fault Cause

If the point is in fault, explains why.
• Read Value

Last read value from device.
• Write Value

Last value written to device (if applicable).
NiagaraAX-3.5

Z-Wave Driver Guide
4-35

zwave-ZWave Point Manager Chapter 4 – ZWave Plugin Guides
March 24, 2015

NiagaraAX-3.5

Z-Wave Driver Guide
4-36

5CHAPTER

Z-Wave Component Guides
These component guides provides summary help on Z-Wave components.

Z-Wave Component Guides Summary
Summary information is provided on components specific to the zwave module, listed in alphabetical
order as follows:
• CcApplicationStatus
• CcBasicTariffInfo
• CcClock
• CcHrvControl
• CcHrvStatus
• CcIndicator
• CcMultiInstance
• CcProtection
• CcSwitchAll
• CcTime
• CcWakeUp
• NodeInformation
• ZWaveAssociationDeviceExt
• ZWaveAssociationGroup
• ZWaveConfigDeviceExt
• ZWaveDevice
• ZWaveManufacturerSpecific
• ZWaveNames
• ZWaveNetwork
• ZWaveNetworkScene
• ZWaveNetworkSceneConfig
• ZWavePointDeviceExt
• ZwaveProxyExt
• ZWaveSceneActuatorConf
• ZWaveSceneDeviceExt
• ZWaveSceneNetworkExt
• ZWaveThermostat
• ZwaveThermostatSetPointProxyExt
• ZWaveUserDeviceExt
• ZWaveVersion

zwave-CcApplicationStatus
CcApplicationStatus (applicationStatus) is a child container of a ZWaveDevice that supports
the Application Status command class. It may be used to see if the device is busy or unable to

process any application requrest, via read-only child properties including the following:
• Status — Indicates the application status last set by the device. Possible values include:

• Try Again Later
• Try Again Wait Seconds
• Request Queued
• Request Rejected
• None
NiagaraAX-3.5

Z-Wave Driver Guide
5–37

Z-Wave Component Guides Summary Chapter 5 – Z-Wave Component Guides
zwave-CcBasicTariffInfo March 24, 2015

• Wait Time — If status is “Try Again Wait Seconds”, this indicates the wait time.
• Timestamp — Timestamp for the last application status message received from this device.

zwave-CcBasicTariffInfo
CcBasicTariffInfo (basicTariffInfo) is a child container of a ZWaveDevice object that supports
the Basic Tarriff Information command class. It is for use with a single-element or dual-

element meter when used with import rates (electricity received from grid) only.
Its read-only properties reflect the meter configuration and its current rate and consumption values.
• Is Dual — If true indicates a dual-element meter, otherwise (false) is a single-element meter.
• Total Number Import Rates — The number of import rates E1 (and E2) supported by the meter.

Value range is 1 - 8.
• Element1 Current Rate In Use— Which import rate is currently in use.
• Element1 Rate Consumption — Consumption rate for element 1, with units in W-hr.
• Time Next Rate — Indicates the time (hh:mm:sec) that the rate is due to change on element 1. It

may also indicate “not used”.
• Element2 Current Rate In Use — Which import rate is currently in use.
• Element2 Rate Consumption — Consumption rate for element 2, with units in W-hr.
In addition, one or two Proxy points are added.

Proxy points
If the device supports the Basic Tariff Information command class, one or two proxy points are
added to its ZWaveDevice’s Points container, with default names as follows:
• rateConsumption

NumericPoint that provides energy consumption in Watt-hours (W-hr).
• rateConsumption2

(Only if a dual-element meter) NumericPoint for energy consumption in Watt-hours (W-hr).

zwave-CcClock
CcClock (clock) is a child container of a ZWaveDevice object that supports the Clock command
class. It can be used for simple clock functionality to display time via read-only child properties,

including the following:
• Unused — Indicates if the clock is not being used by the device (If true, clock not being used).
• Time — If used (Unused = false), this is the current time of day in the device, to minute resolution.
• Week Day — If used (Unused = false), this is the current day of the week in the device.
In addition, the following right-click actions are on the CcClock (clock) component:
• Read Time — Forces a time read request to be sent to the device.
• Sync Time — Sends a message to the device to set its time and date to match the current time and

date in the JACE.

zwave-CcHrvControl
CcHrvControl (hrvControl) is a child container of a ZWaveDevice object that supports the HRV
Control command class, to control the operation of a HRV (Heat Recovery Ventilation) system.

During a discovery, the Z-Wave driver queries the device to determine the control modes and bypass
modes that the device supports. and adds one or more Proxy points as a result.
In addition, a right-click action, Read Modes Supported, is on the CcHrvControl component.
This allows you to force the reading of the HRV Control modes supported by the device, where corre-
sponding proxy points are added.

Note: This is automatically done during the discovery process

Proxy points
If the device supports the HRV Control command class, three proxy points are added to its
ZWaveDevice’s Points container. Point types and their default names are shown in Table 5-1.
NiagaraAX-3.5

Z-Wave Driver Guide
5-38

Chapter 5 – Z-Wave Component Guides Z-Wave Component Guides Summary
March 24, 2015 zwave-CcHrvStatus

Table 5-1 HRV Control proxy point default names to HRV control function and point type

Enum choices for hrvControl Based on the Manual Control Modes supported, the enum choices for
the “hrvControl” point include only the values supported by the device, among those in Table 5-2.

Table 5-2 Descriptions for possible Enum tags for EnumWritable (hrvControl) proxy point

Action choices for NumericPoints Based on the Manual Control Modes supported, one or more
actions are added to the (NumericPoint) “bypass” proxy point, among those in Table 5-3.

Note: If the “hrvControl” EnumWritable is not in “manual”, the device will ignore these manual commands.

Table 5-3 Possible actions and descriptions for NumericPoint “bypass” proxy point

In addition, the following action may be added to the (NumericPoint) “ventilationRate” proxy point:
• “set” — Sets the manual ventilation rate to a value from 0 to 99.

zwave-CcHrvStatus
CcHrvStatus (hrvStatus) is a child container of a ZWaveDevice object that supports the HRV
Status command class, to read a number of HRV (Heat Recovery Ventilation) parameters. During

a discovery, the Z-Wave driver queries the device and adds one or more Proxy points as a result.
In addition, a right-click action, Read Status Supported, is on the CcHrvStatus component.
This allows you to force the reading of the HRV Status parameters supported by the device, where corre-
sponding proxy points are added.

Note: This is automatically done during the discovery process

Proxy points
If the device supports the HRV Status command class, from 1 to 7 NumericPoints are added to its
ZWaveDevice’s Points container. Default names are according to available parameters (Table 5-4).

Default proxy point name HRV Control function Point type

“hrvControl” Operation mode EnumWritable
“ventilationRate” Set Ventilation Rate NumericPoint
“bypass” Bypass Control NumericPoint

“hrvControl” Enum Tag Description

“off” System is in the off state; frost protection can occur.
“demandAuto” System is controlled based on sensor input.
“schedule” System is controlled based on predefined input from

the factory and/or the user or installer.
“energySaving” System is put into a reduced heat / ventilation mode.
“manual” System is in manual mode.

“bypass” Action Description

“openClose” Can force the bypass open of closed.
“auto” Sets the bypass into automatic mode.
“set” Sets the bypass to a value from 1 to 99.
NiagaraAX-3.5

Z-Wave Driver Guide
5-39

Z-Wave Component Guides Summary Chapter 5 – Z-Wave Component Guides
zwave-CcIndicator March 24, 2015

Table 5-4 HRV Status proxy point default names to HRV status parameters

zwave-CcIndicator
CcIndicator (indicator) is a child container of a ZWaveDevice object that supports the
Indicator command class. Use it to read or change the “Indicator” value for the device, via the

single read-only property “Indicator”, as well as actions to read and/or set the Indicator on and off.
Note: Depending on the device, “Indicator” behavior can vary. For example, this may control whether an LED

stays lit on a wall-mounted device like a switch or dimmer, making it easier to find at night.
Available actions on the CcIndicator (indicator) component are as follows:
• Read — Read from the device whether Indicator is On (true) or Off (false).
• Indicator On — Request the device to turn Indicator On.
• Indicator Off — Request the device to turn Indicator Off.

zwave-CcMultiInstance
CcMultiInstance (multiInstance) is a child container of a ZWaveDevice that supports either the
Multi Instance (version 1) command class or Multi Channel (version 2) command class. It

is used to control multiple instances of a given function in a device. In newer devices, the Multi
Instance command class has largely been replaced by the similar Multi Channel command class,
version 2.
Read-only child properties include the following:
• Dynamic — If true, indicates that the device has a dynamic number of instances, where the number

of instances can change over time.
• Identical — If true, indicates that each instance supports the same command classes.
• Number End Points— Number of instances (end points) embedded in the device.
The driver also interrogates the device to determine the number of instances that exist for each of the
supported command classes. See these instance counts on properties under the “Cmd Classes”
component under the ZWaveDevice’s “Node Info” component (NodeInformation), where they appear as
“count=1” or “count=2”, and so on.
If multiple instances are supported by the device, the driver may create additional components to model
the additional instance. Any additional components are created using a name that includes a “_n” suffix,
where n is the instance number.

Note: The first instance does not have a suffix, that is, there is no “_1” suffix.
For example, if the device supports two (2) instances of the Switch Binary command class, two Boolean-
Writable proxy points are created: named “switch” and “switch_2.’”
Also, if the device supports the Multi Channel command class, additional “assocInEp(n)” slots are
added to the ZWaveDevice component, to support associations to different endpoints.

zwave-CcProtection
CcProtection (protection) is a child container of a ZWaveDevice that supports the
Protection command class, used to protect a device against unintentional control (e.g. a

youngster). A single read-only child property (“Protection”) indicates the current protection state.
Right-click actions on CcProtection (protection) are as follows:
• Read — Forces the driver to read the protection state from the device.
• Set — Provides a popup Set dialog, from which you can select a protection state to be used by the

device, for example:
• Unprotected

Default proxy point name HRV Status parameter

“outsideTemp” Outdoor Air temperature
“supplyTemp” Supply Air temperature
“exhaustTemp” Exhaust Air temperature
“dischargeTemp” Discharge Air temperature
“roomTemp” Room temperature
“roomRelHum” Relative Humidity in room
“remainingFilterLife” Remaining filter life
NiagaraAX-3.5

Z-Wave Driver Guide
5-40

Chapter 5 – Z-Wave Component Guides Z-Wave Component Guides Summary
March 24, 2015 zwave-CcSwitchAll

• Protect By Sequence
• Local Operation Blocked

zwave-CcSwitchAll
CcSwitchAll (switchAll) is a child container of a ZWaveDevice object that supports the All
Switch command class. Its read-only properties specify how the Z-Wave “all devices” commands

“All On” or “All Off” are handled, where this can vary among devices.
Actions “Read” and “Set” allow re-reading and changing the value in the device.

Figure 5-1 Set actions on “switchAll” (CcSwitchAll) component

The ZWaveNetwork has available “All On” and “All Off” actions that broadcast Z-Wave “all devices”
commands. See “ZWaveNetwork actions” on page 3-11 for related details.

zwave-CcTime
CcTime (time) is a child container of a ZWaveDevice that supports the Time command class. It
contains a single read-only “Date Time” property that reads the date and time from the device in the

Z-Wave network.

zwave-CcWakeUp
CcWakeUp (wakeUp) is a child container of a ZWaveDevice that supports the Wake Up command
class, typical for a battery-powered device. This allows the device to “sleep” for periods and then

“wake up” occasionally to notify another device (always listening) that the device is ready to receive
queued commands. Typically, (with the JACE operating as the SIS or SUC), this other device is the JACE.
Read-only properties of this component specify a number of parameters and statistics related to this
wake up routine, as follows:
• Is Awake — Indicates by “true” that a wake-up notification has been received from the device, and

the driver is actively reading or writing data from/to the device.
Note: There may be times that a device is actually awake, yet this property indicates “false”. This can
occur after a button on the device has been pushed, which typically keeps the device awake for a fixed
period (for example, 10 minutes). The driver gets the notification when the button is pushed, and then
immediately updates received data and executes any queued write messages. After completing all
transactions, the driver then marks this property as false (typical after any “normal” awake routine).
This is necessary because devices do not send any notification when a “button timeout” expires.

• Request — Shows request status information. For example, if the component’s “Set Wake Up In-
teval” action is invoked to set it to 360 (seconds), the string “setWakeUpInterval posted: 360”
would be shown. When the device wakes up and the interval is written, “wakup interval writ-
ten: 360 30-Jul-10 9:53 AM EDT” would be shown.

• Interval — Reflects the time period, in seconds, that the device periodically wakes up and sends a
Wake Up Notification command to the node specified in the “Node Id” property.
Note: A right-click “Set Wake Up Interval” action is available to modify this period, if needed.

• Min Interval — Minimum wake up interval supported by this battery-powered device.
• Max Interval — Maximum wake up interval supported by this battery-powered device.
• Default Interval — Factory-default wake up interval for this battery-powered device.
• Step Size — Resolution of possible changes to the wake up interval for this battery-powered device.
• Last Wake Up — Timestamp the last Wake Up Notification message was received from this device.
• Next Wake Up — Timestamp of the next (anticipated) Wake Up Notification message to be received

from this device. If two (2) consecutive wake up interval messages are missed from the device, the
parent ZWaveDevice is flagged as “down”.

• Node Id — The Z-Wave node ID to which this device sends its Wake Up Notification messages. If
the JACE is acting as the network’s SIS or SUC (recommended), it is automatically set to the JACE’s
node ID (2). Otherwise, it is set to 255, which is the Z-Wave broadcast address.
NiagaraAX-3.5

Z-Wave Driver Guide
5-41

Z-Wave Component Guides Summary Chapter 5 – Z-Wave Component Guides
zwave-NodeInformation March 24, 2015

In addition to properties above, several actions are available on the CcWakeUp (wakeUp) component,
described as follows:
• Set Wake Up Interval — Use to modify the wakeup interval used (and stored) in the device.
• Post Read Node Info — Forces the driver to request the device to send its Node Information mes-

sage the next time the device wakes up. You might invoke this to be sure that all of its supported
command classes are known to Niagara.

• Read Device Data — This action is automatically invoked when a Wake Up Notification message is
received from the battery-powered device. It forces the driver to read the data from all supported
command classes, including any device-resident components as well as any proxy (control) points.

Note: For background details on battery-powered Z-Wave devices, see “Battery-powered (non-listening) device
considerations” on page 1-5.

zwave-NodeInformation
NodeInformation (Node Info) is a child container of any ZWaveDevice component
(ZWaveDevice or ZWaveThermostat). Its read-only properties specify all of the device classes and

command classes supported, as returned by the Z-Wave device. An action is also available.
For more details, see “Node Info” on page 3-16.

zwave-UserInfo
UserInfo (usern) is a child container under a ZWaveDevice’s “users” component (ZWaveUserDe-
viceExt), available only if the device supports the User Code command class. It contains infor-

mation about a local Z-Wave user in the device.
Read-only properties of a user are as follows.
• User Id — Integer value ID, unique among all users of device.
• User Id Status — Numerical status of the user.
• User Code — String to associate with the user.

zwave-ZWaveAssociationDeviceExt
ZWaveAssociationDeviceExt (association) is a child container of a ZWaveDevice, providing the
device represented supports the Association command class. Associations are application-level

connections between devices, where each is represented by a child ZWaveAssociationGroup component.
Typically, you graphically view and create such associations between ZWaveDevices by working from the
wire sheet of the ZWaveNetwork. Read-only properties of this component include the following:
• Version — The version of this command class.
• Is Multi Instance — Indicates if multiple instance associations are supported (true) or not (false).
• Supported Groupings — Indicates the number of groupings this node supports. A grouping can be

considered the “source” of an association.
For related details, see “About Z-Wave Associations” on page 3-30.

zwave-ZWaveAssociationGroup
ZWaveAssociationGroup (groupn) represents an association to one or more Z-Wave devices, and
and is a child of a ZWaveDevice’s associations extension (ZWaveAssociationDeviceExt). Each

group contains a number of read-only properties, including the following:
• Request — Typically blank, but may have text if a pending request to battery-powered node.
• Group Id — Integer number of association group.
• Max Nodes Supported — Maximum nodes that can be associated from this group.
• Nodes — Node IDs of association targets.
• Nodes String— Same as above.
• Multi Instance Nodes — Node IDs of multi instance association targets.
• Multi Instance Nodes String — Same as above
By default, an association to the JACE’s Z-Wave interface (Z-Wave option card or serial Z-Wave gateway)
is automatically assumed. Typically, other associations are added by working from the wire sheet view of
the ZWaveNetwork. Adding wire sheet links results in child group1 - groupn components.
For more details, see “About Z-Wave Associations” on page 3-30.
NiagaraAX-3.5

Z-Wave Driver Guide
5-42

Chapter 5 – Z-Wave Component Guides Z-Wave Component Guides Summary
March 24, 2015 zwave-ZWaveConfigDeviceExt

zwave-ZWaveConfigDeviceExt

ZWaveConfigDeviceExt (configuration) is a child container of a ZWaveDevice that supports
the the Configuration command class. Use it to retrieve (and if necessary, edit) various “factory

default” settings in the selected Z-Wave device. Included is a right-click action to “Read Config Data”,
which dynamically adds writable config1 - confign properties, each with the current integer value.
The following properties are always included:
• Max Number Config Properties — Maximum number of configuration parameters the driver at-

tempts to retrieve when invoking the “Read Config Data” action. The default is 10, and is adjustable.
If greater than the available number of config parameters, upon a “Read Config Data” action, after
all available parameters are retrieved, a “no response to confign request” message appears in
the “Response” property, and further requests cease.

• Request — (read-only) Reflects in real time the current request, e.g. “configData 2 requested”.
• Response — (read-only) Reflects the current or last results from the last “Read Config Data” action.

Included are “no response” messages if too many parameters were attempted (see above), as well as
messages related to pending operations if a battery-powered device.

Following a successful “Read Config Data” action, one or more writable properties are included:
Note: All have integer values from 0 - 255. Before modifying any of these properties, refer to the documentation

for that Z-Wave device to be sure the results will be as intended.
• config1 — First of the device’s available configuration parameters.
• confign — Next in the series of available configuration parameters.
Modifying and saving a config property value causes the new value to be written to the device.

Note: If the device is battery-powered and is “sleeping”, any read request (“Read Config Data” action) or write
request (modified config property) is posted for execution the next time that the device wakes up. This is
reflected in the “Request” and “Response” status properties, described above.

zwave-ZWaveDevice
ZWaveDevice is one of two “device-level” components in a ZWaveNetwork, and represents a
specific node (the other device-level component type is the ZWaveThermostat). Each has a Points

device extension (ZWavePointDeviceExt) that contains all proxy points for polling.
A ZWaveDevice has the standard device component properties such as status and enabled (see
“Common device components” in the Drivers Guide for general information). Common Z-Wave device
properties include its unique Node Id, Node Info, and Device Profile.
Depending on the specific Z-Wave command class(es) supported by the device, one or more command
class containers are dynamically added to each ZWaveDevice. Each command class container contains
specific properties, and in some cases may contain child components. Some command classes also result
in proxy (control) points created under the Points extension of the ZWaveDevice.
The default view for a ZWaveDevice is its property sheet. A number of actions are also typically available.
For more details, see “About the ZWaveDevice” on page 3-14.

zwave-ZWaveManufacturerSpecific
ZWaveManufacturerSpecific (manufacturerSpecific) is a child container of a ZWaveDevice
that supports the Manufacturer Specific command class. Its read-only properties reflect

assignments for specific ID values stored in the device, as follows:
• Manufacturer Id — Unique manufacturer ID, as assigned by Zensys.
• Product Type Id — Product type ID, assigned by the manufacturer.
• Product Id — Product ID, assigned by the manufacturer.
Values use hexadecimal notation. For example, a device might have:
• Manufacturer Id = 1a
• Product Type Id = 5244
• Product Id = 2
In Workbench, these ID values are used in the file name for a saved “device template” (Device Profile), to
associate with the correct device. The example device (above) would have a device profile file name of:
x1a_x5244_x2.info

For related details, see “About Device Profiles” on page 3-32.
NiagaraAX-3.5

Z-Wave Driver Guide
5-43

Z-Wave Component Guides Summary Chapter 5 – Z-Wave Component Guides
zwave-ZWaveNames March 24, 2015

zwave-ZWaveNames

ZWaveNames (Naming) is a child container of a ZWaveDevice, providing it supports the Node
Naming and Location command class. It is used to assign and store name and location text

strings in the device’s non-volatile memory.
This component has read-only properties that reflect the assigned “Node Name” and “Node Location” of
the Z-Wave device. Included are the following right-click actions:
• Assign Node Name— Provides a popup field (blank) in which you can enter a Node Name to write

to the device.
• Assign Node Location — Provides a popup field (blank) in which you can enter a Node Location to

write to the device.
• Read Node Name— Forces the driver to read the Node Name from the device.
• Read Node Location — Forces the driver to read the Node Location from the device.

Note: The two “Assign” actions (to write to the device) also appear as actions on the parent ZWaveDevice
component. See “ZWaveDevice actions” on page 3-19.

zwave-ZWaveNetwork
ZWaveNetwork is the top-level component for the Z-Wave driver in a station. It provides configu-
ration parameters necessary for the driver to communicate with a network of Z-Wave devices

through a Z-Wave serial gateway—either a JACE controller’s Z-Wave option card, or an external, third-
party, serial Z-Wave gateway. The ZWaveNetwork component has the typical collection of slots and
properties as most other network components—refer to “Common network components” in the Drivers
Guide.
The ZWaveNetwork also has a number of properties and actions unique to operation in a Z-Wave system.
For more details, see “About the ZWaveNetwork” on page 3-7.

zwave-ZWaveNetworkScene
ZWaveNetworkScene represents a Z-Wave scene, and is a child of the Scenes network extension
(ZWaveSceneNetworkExt) of the ZWaveNetwork. Each scene has a unique numerical “Scene Id”

(from 1 - 255), assigned by the system. Each scene can contain multiple scene “config” containers, which
contain properties that define how different nodes are controlled when the scene is activated.
The default view for any scene is the Network Scene Manager, which you use to add or edit scenes
configs, discover nodes that support scenes, or activate scenes. For more details, see “About Z-Wave
Scenes” on page 3-27.

zwave-ZWaveNetworkSceneConfig
ZWaveNetworkSceneConfig is a container that specifies how one node is affected by a specific Z-
Wave scene, and is a child of a scene (ZWaveNetworkScene). It holds configuration properties that

include the level and duration for dimming (if applicable for control of a dimmer node), as follows:
• Scene Id — Unique integer 1 - 255, to specify the scene (automatically assigned by the system).
• Dimming Duration — Specifies the time, in Duration Units, that a dimming device takes to ramp

to the specified scene Level.
• Duration Units — Specifies time units for Dimming Duration.
• Override — If set false, then the current level or state of the device is uses as the dimming level, and

the following “Level” property is ignored.
• Level — Specifies the final dim level, from 0 - 100. If this is a Boolean (binary) device, then 0 = Off,

100 (or any non-zero value)= On.
You typically use the default view of the parent scene, in the Network Scene Manager, to add or edit these
scene configs. For more details, see “Creating and setting up scenes” on page 3-27.

zwave-ZWavePointDeviceExt
ZWavePointDeviceExt (default name Points) is the container for ZWave proxy points under a Z-
Wave device object (ZWaveDevice or ZWaveThermostat). Proxy points represent data items in the

device that need to be polled for data. It operates as in most other drivers; see “About the Points
extension” in the Drivers Guide for general information. The default and primary view for the Points
extension is the ZWave Point Manager.
For specific Z-Wave details, see “ZWave Point Manager” on page 3-20 and “About ZWave proxy points”
on page 3-21.
NiagaraAX-3.5

Z-Wave Driver Guide
5-44

Chapter 5 – Z-Wave Component Guides Z-Wave Component Guides Summary
March 24, 2015 zwave-ZWaveProxyExt

zwave-ZWaveProxyExt

ZWaveProxyExt is the most common proxy extension for any dynamically-created ZWave proxy
point. It represents a single piece of data defined by a specific Z-Wave command class. It has standard

proxy extension properties such as Status and Enabled, among others. For additional details, see “About
ZWave proxy points” on page 3-21 and “ZWave proxy points by default name” on page 3-23.

zwave-ZWaveSceneActuatorConf
ZWaveSceneActuatorConf (scenen) represents the action configuration for this device during a
specific scene, and and is a child of a ZWaveDevice’s scenes extension (ZWaveSceneDeviceExt).

Read-only properties reflect the current configuration, which if necessary can be edited from the
Network Scene Manager view of a scene under the Scenes network device extension. For related
details, see “About Z-Wave Scenes” on page 3-27.

zwave-ZWaveSceneDeviceExt
ZWaveSceneDeviceExt (scenes) is a container slot on a ZWaveDevice, providing the Z-Wave
device represented supports scenes. It has no configuration or status properties. If one or more scenes

have been defined that include this device, it contains corresponding child “scene actuator configuration”
(ZWaveSceneActuatorConf) components.
Although scenes have this “device-level” visibilty, they are typically engineered at the “network level”,
using the Scenes network extension on the Z-WaveNetwork. For more details, see “About Z-Wave
Associations” on page 3-30.

zwave-ZWaveSceneNetworkExt
ZWaveSceneNetworkExt (Scenes) is a frozen container slot on a ZWaveNetwork, used to manage
(create, edit and hold) Z-Wave scenes. It has no configuration or status properties.

The default view for Scenes is the Network Scene Ext Manager, which you use to add New scenes,
edit existing scenes, or activate scenes. For more details, see “About Z-Wave Scenes” on page 3-27.

zwave-ZWaveSerialPlugin
ZWaveSerialPlugin (Comm Plug In) is a container on a ZWaveNetwork, used to configure serial
parameters and other messaging parameters for the host’s Z-Wave interface (JACE Z-Wave option

card or external Z-Wave serial gateway). For related details, see “Comm Plug In” on page 3-8.

zwave-ZWaveThermostat
ZWaveThermostat is one of two “device-level” components in a ZWaveNetwork, and represents a
specific thermostat node (the other device-level component type is the ZWaveDevice). Each has a

Points device extension (ZWavePointDeviceExt) that contains all proxy points for polling.
A ZWaveThermostat has the standard device component properties such as status and enabled (see
“Common device components” in the Drivers Guide for general information). Common Z-Wave device
properties include its unique Node Id, Node Info, and Device Profile. Depending on the specific Z-Wave
command class(es) supported by the device, one or more command class containers are dynamically
added to each ZWaveThermostat, and proxy (control) points are also created.
The default view for a ZWaveThermostat is its property sheet. A number of actions are also typically
available. For more details, see “About the ZWaveDevice” on page 3-14 and “Types of ZWave device
components” on page 3-14.

zwave-ZWaveThermostatSetPointProxyExt
ZWaveThermostatSetPointProxyExt is the proxy extension for a dynamically-created ZWave proxy
point for a setpoint in a ZWaveThermostat device component. It represents a single setpoint defined

by the Z-Wave Thermostat Setpoint command class. It has standard proxy extension properties such as
Status and Enabled, among others. For additional details, see “About ZWave proxy points” on page 3-21
and “Thermostat Setpoint” on page 3-26.

zwave-ZWaveUserDeviceExt
ZWaveUserDeviceExt (users) is a child container of a ZWaveDevice, providing the Z-Wave device
represented supports the User Code command class. Users are application-level users of a device,

where each is represented by a child UserInfo component.
A single read-only property is as follows:
• Number Users — Total number of defined users.
NiagaraAX-3.5

Z-Wave Driver Guide
5-45

Z-Wave Component Guides Summary Chapter 5 – Z-Wave Component Guides
zwave-ZWaveVersion March 24, 2015

zwave-ZWaveVersion

ZWaveVersion (Version) is a child container of a ZWaveDevice, providing it supports the
Version command class. Its read-only properties specify the following:

• Library Type — Numerical Z-Wave library type.
• Protocol Version — Numerical Z-Wave protocol version.
• Application Version — Numerical vendor-specific application version.
A right-click action “Read Cmd Class Versions” is also available, which is automatically invoked upon a
device discover. This retrieves the information above, as well as the version of each of the device’s
supported command classes. These versions are reflected in the ZWaveDevice’s “Node Info”, “Cmd
Classes” properties (see “Node Info” on page 3-16).
NiagaraAX-3.5

Z-Wave Driver Guide
5-46

	Preface
	Z-Wave terms
	Document Change Log

	Compatibility, Software Installation, and Jobsite Requirements
	Compatibility
	NiagaraAX platform compatibility
	Z-Wave compatibility
	Z-Wave reference documents

	Z-Wave command classes supported
	License requirements
	Software installation
	Z-Wave jobsite requirements
	About a Z-Wave portable primary controller
	About JACE Z-Wave operation modes
	Secondary Static Controller
	Static Update Controller (SUC)
	SUC ID Server (SIS)

	Battery-powered (non-listening) device considerations
	Frequently Listening Routing Slave (FLiRS) device considerations

	Z-Wave Driver Quick Start
	Add and configure the ZWaveNetwork
	Add the ZWaveNetwork
	Configure ZWaveNetwork communication parameters

	Install the JACE on the Z-Wave network
	Review ZWave proxy points and device child components

	NiagaraAX Z-Wave Concepts
	About Z-Wave to NiagaraAX Architecture
	Modeling Z-Wave in the NiagaraAX station
	Palette for ZWave driver

	About the ZWaveNetwork
	ZWave-specific network slots
	Comm Plug In
	Other interface related properties
	ZWave Scenes network extension

	Common ZWaveNetwork slots
	ZWaveNetwork status notes
	ZWaveNetwork monitor notes
	ZWaveNetwork tuning policy notes
	ZWaveNetwork poll scheduler notes
	ZWaveNetwork message handling properties

	ZWaveNetwork actions

	ZWave Device Manager
	Buttons (network management functions)
	Discover
	ScanForDevices
	ReplicateReceive
	TransferPrimary
	OptimizeNetwork

	About the ZWaveDevice
	Types of ZWave device components
	ZWaveThermostat
	ZWaveDevice

	ZWaveDevice common properties
	Node Info
	Points

	ZWaveDevice child components
	Child component types

	ZWaveDevice actions

	ZWave Point Manager
	Editing ZWave proxy points

	About ZWave proxy points
	ZWaveProxyExt properties
	ZWave proxy point actions
	ZWave proxy points by default name
	Alarm Sensor
	Alarm Silence
	Battery
	Battery Sensor
	Binary Switch
	Binary Toggle
	Energy Production
	Hail
	Lock
	Meter
	Move To Position Window Covering
	Multilevel Sensor
	Multilevel Switch
	Pulse Meter
	Thermostat Fan Mode
	Thermostat Fan State
	Thermostat Mode
	Thermostat Operating State
	Thermostat Setpoint

	About Z-Wave Scenes
	Creating and setting up scenes
	Activating scenes

	About Z-Wave Associations
	Single Instance Associations
	Multi Instance Associations
	Multi Channel Associations

	About Device Profiles

	ZWave Plugin Guides
	ZWave Plugin Guides Summary
	zwave-NetworkSceneExtManager
	zwave-NetworkSceneManager
	zwave-ZWave Device Manager
	zwave-ZWave Point Manager

	Z-Wave Component Guides
	Z-Wave Component Guides Summary
	zwave-CcApplicationStatus
	zwave-CcBasicTariffInfo
	Proxy points

	zwave-CcClock
	zwave-CcHrvControl
	Proxy points

	zwave-CcHrvStatus
	Proxy points

	zwave-CcIndicator
	zwave-CcMultiInstance
	zwave-CcProtection
	zwave-CcSwitchAll
	zwave-CcTime
	zwave-CcWakeUp
	zwave-NodeInformation
	zwave-UserInfo
	zwave-ZWaveAssociationDeviceExt
	zwave-ZWaveAssociationGroup
	zwave-ZWaveConfigDeviceExt
	zwave-ZWaveDevice
	zwave-ZWaveManufacturerSpecific
	zwave-ZWaveNames
	zwave-ZWaveNetwork
	zwave-ZWaveNetworkScene
	zwave-ZWaveNetworkSceneConfig
	zwave-ZWavePointDeviceExt
	zwave-ZWaveProxyExt
	zwave-ZWaveSceneActuatorConf
	zwave-ZWaveSceneDeviceExt
	zwave-ZWaveSceneNetworkExt
	zwave-ZWaveSerialPlugin
	zwave-ZWaveThermostat
	zwave-ZWaveThermostatSetPointProxyExt
	zwave-ZWaveUserDeviceExt
	zwave-ZWaveVersion

